

1

Exercise 6 (DH_KX)

Diffie-Hellman algorithm for exchanging a secret key (DH_KX) in a public network

The basic disadvantage of cryptography based on a symmetrical secret key is its agreement and

exchange between the parties of communication, which takes place in the conditions of a public

computer network. One should be aware of the fact that the public, and therefore uncertain,

communication channel may be followed by a third party (an intruder, a spy) whose aim is to obtain the

transmitted messages.

This problem has led to the development of alternative methods based on asymmetry of information

exchange using a private and public key, such as the flagship RSA algorithm. However, before this

algorithm came into existence, mathematicians Diffie and Hellman had developed an algorithm a year

earlier (1976) dedicated only to the mutual exchange of keys to continue to remain in the sphere of

symmetrical ciphering with the certainty that this key was not intercepted and recognised by anyone.

You should know that this is still the case today, because symmetric encryption is a few orders of

magnitude faster than asymmetric and is still used for encryption, especially of large data packets.

The basis of Diffie-Hellman's Key Exchange algorithm is the computational difficulty of discrete

logarithms, what was explained in the wider material associated with this exercise.

Presentation of Diffie-Hellman's algorithm

General characteristics

The first description of the public keys algorithm was published in 1976. It allows to generate a secret

key common to many corresponding people and safe, public exchange of it. This key will be used for

symmetrical encryption and decryption of messages. It is used in many commercial applications.

Basic features of the algorithm

The value of a key depends on the value of public and private keys of people who decide to exchange it

with each other. To generate it, the arithmetic of modular exponentiation (relatively simple in terms of

calculation) is used. The security of the key is ensured by the difficulty of calculating the so-called

discrete logarithm.

Key generation process

• All interested parties agree on common global parameters:

✓ p - large prime number

✓ g - one of the primitive roots of the number p, g < p, (group generator)

• Each user (e.g. A - Alice) generates his own key

✓ first determines its private key xA, which only meets the condition: xA < p
✓ then it calculates its public key: yA = gx

A mod p
• For user B (Bob), the process is similar:

✓ determining the private key xB, fulfilling only the condition: xB < p
✓ calculating his public key: yB = gx

B mod p

• Each user shares its public key with everyone.

2

Working with CrypTool 2.1

The exercise will be performed in the workspace of CrypTool 2.1 using the components available in the

toolkit. The most common component is the modular power amplification operator v = x^y. Its specific

form is created after selecting a tray for numerical operations where you can

use the mouse to select the one- or two-argument action of a character: x+y, x-y, x*y, x/y, x^y mod p,

GCD(x,y), LCM(x,y), integer square root(x), modular inverse (x, y) mod p and the totient function

phi(x), also known as the Euler function. The modular power block takes the form of

and the description below Number Operator can be changed to better match the operation being

performed, e.g.: v = x^y mod p.

Input and output terminals provide the appropriate x and y arguments, the module p and the result v.

Terminal recognition is done by indicating it with a mouse and reading a comment developed for a

moment explaining the type of expected signal, as shown in the figure:

As you can see, you will still need the Number Input windows and Number Output windows. Practical

considerations also suggest that the two basic parameters p and g, which must reach each of the modular

power blocks, should be made a kind of global variable. Leaving them in the usual form will significantly

reduce the readability of the algorithm's block diagram by multiple overlapping and crossing of lines

connecting the input/output terminals.

Creating, for example with a parameter p a global variable Var and, similarly the g variable,

Calculation of the common secret key by the communication participants

Every two people, such as A and B, calculate a common KAB key:

• KAB = yB
x
A mod p = (gx

B)x
A mod p = gx

B
x
A mod p (that's how Alice calulate it.)

• KBA = yA
x
B mod p = (gx

A)x
B mod p = gx

A
x
B mod p (that's how Bob calulate it.)

• KAB = KBA = K is a session key used to encrypt and decrypt correspondence between Alice

 and Bob.

• They may modify it at any time, particularly in the next session.

3

makes them accessible to the general public at any point in the working space and extracted by means

of a Var window with an arrow pointing in the opposite direction as an extraction of content, as below.

Finally, each window with connections can be moved and enlarged to read its full content. The handle

in the lower right corner of each window/block is used for this purpose.

Implementation of the exercise (demonstrative case)

Based on the description of the algorithm and the remarks of the teacher, the student prepares a sketch

of the block diagram together with the network of connections. It is suggested to place Var variables at

the top of the screen (workspace) and place person A (Alice) on the left side, and B (Bob) on the right

side of the screen.

It is necessary to show the KAB and KBA session key values on both sides of the screen, i.e. Alice and

Bob, to see that they are identical, even though the key was not transmitted openly on either side.

To check the function of the Diffie-Hellman algorithm, you must perform the calculation with the

following assumptions:

➢ Alice and Bob agree to exchange the key and agree to the prime number p = 353 and g = 3

(the student checks that g = 3 is actually the original primitive root of p = 353 by calling the

link http://www.bluetulip.org/2014/programs/primitive.html)

➢ They select their private keys for themselves: A: xA= 97, B: xB= 233. They

➢ They calculate the appropriate public keys on their basis:

yA = 397mod 353 = 40 (Alice) and yB = 3233mod 353 = 248 (Bob)

➢ They exchange public keys by sending each other.

➢ They calculate the common session key separately:

KAB= yB
x
A mod 353 = 24897mod 353 = 160 (Alice)

KBA= yA
x
B mod 353 = 40233 mod 353 = 160 (Bob)

Computational difficulty for the intruder

Let's now pay attention to the computational difficulty for the intruder watching communication. It has

the following information: p = 353, g = 3 yA = 40 and yB = 248. To obtain KAB, he must solve one of the

congruence equations: 3amod 353 = 40 or 3bmod 353 = 248, in which the exponent a or b are discrete

logarithms a = dlog3,353 40 and b = dlog3,353 248. There is nothing else to do but substitute subsequent

values of the exponent until he gets the value 40 or 248. Such a number is 97 or 233 because only 397mod

353 = 40 or 3233mod 353 = 248. At first glance it's simple, but for prime numbers with a few hundred

digits, it's practically impossible.

http://www.bluetulip.org/2014/programs/primitive.html

4

For example: ID = 43997, then

1

4
9
4

3
9
3

9
7
6

 the leftmost prime number close to 1436 is p = 1433. If your

number is out of scope of the table, please find in Internet the table with wider range of numbers, like

the table of first 1000 primes. With p = 1433 go to the website showing all primitive roots of p, what in

this exemplary case gives the list of 712 generators, while the greatest generator is g = 1430. For xA

choose 43 and for xB the totient of 1430 equals 480, because (1430) = 480 (use the Totient.xlsm file).

The content of report

1. Fill the table below and send its picture showing all individual data and calculations of both

keys KAB and KBA

2. Attach the IDxxxxx.cwm file showing the use of Cryptools 2.1 software.

Surname and name of the student

ID number

A specific sum of ID digits explained in

Homework 3 and example above

p = the prime number found in the way

described in Homework 3 (RSA)

g = the greatest primitive root of p

xA - first two ID digits

xB = (g)

yA - show the formula and calculations

yB - show the formula and calculations

KAB - show the formula and calculations

KBA- show the formula and calculations

Is KAB = KBA?
  YES  NO

Part of exercise to be done with the individual set of data

Generally, you will be asked to perform DH_KX calculation on the base of data from Homework 3

(RSA). You will play a double role of Alice and Bob simultaneuosly.

On the base of prime number p already found in Homework 3 (RSA), go with your p number to

the website of primitive roots (already shown in demonstrative part). Find then the greatest primitive

root of p and use it as the value of generator g of the multiplicative group Zp. It means that
consecutive

powers of g, like g, g2, g3,… will generate all elements of Zp and especially gp - 1 = 1 in algebra mod
p.

For the values of private keys xA choose first two digits of your ID number and xB = (g).

