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Exercise  6  (DH_KX)

Diffie-Hellman algorithm for exchanging a secret key  (DH_KX)  in a public network

The  basic  disadvantage  of  cryptography  based  on  a  symmetrical  secret  key  is  its  agreement  and

exchange  between  the  parties  of  communication,  which  takes  place  in  the  conditions  of  a  public

computer  network.  One  should  be  aware  of  the  fact  that  the  public,  and  therefore  uncertain,

communication channel may be followed by a third party (an intruder, a spy) whose aim is to obtain the

transmitted messages.

This problem has led to the development of alternative methods based on asymmetry of information

exchange  using  a  private  and  public  key,  such  as  the  flagship  RSA  algorithm.  However,  before  this

algorithm came into existence, mathematicians Diffie and Hellman had developed an algorithm a year

earlier  (1976)  dedicated  only  to the  mutual  exchange of  keys to  continue  to remain  in the  sphere  of

symmetrical ciphering with the certainty that this key was not intercepted and recognised by anyone.

You  should  know  that  this  is  still  the  case  today,  because  symmetric  encryption  is  a  few  orders  of

magnitude faster than asymmetric and is still used for encryption, especially of large data packets.

The  basis  of  Diffie-Hellman's  Key  Exchange  algorithm  is  the  computational  difficulty  of  discrete

logarithms,  what was explained in the wider material associated with this exercise.

Presentation of Diffie-Hellman's algorithm

General characteristics

The first description of the public keys algorithm was published in 1976. It allows to generate a secret

key common to many corresponding people and safe, public exchange of it. This key will be used for

symmetrical encryption and decryption of messages. It is used in many commercial applications.

Basic  features of the algorithm

The value of a key depends on the value of public and private keys of people who decide to exchange it

with each other. To generate it, the arithmetic of modular  exponentiation (relatively simple in terms of

calculation)  is  used.  The  security  of  the  key  is  ensured  by  the  difficulty  of  calculating  the  so-called

discrete logarithm.

Key generation process

•  All interested parties agree on common global parameters:

✓ p  -  large prime number

✓ g  -  one of the primitive roots of the number  p,  g  <  p, (group generator)

•  Each user (e.g. A  -  Alice) generates his own key

✓ first determines  its  private key  xA, which only meets the condition:  xA  <  p
✓ then it  calculates  its  public key:  yA  =  gx

A  mod  p
•  For user B (Bob), the process is similar:

✓ determining the private key  xB,  fulfilling only the condition:  xB  <  p
✓ calculating  his  public key:  yB  =  gx

B  mod  p

•  Each user shares  its  public key with everyone.
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Working with CrypTool 2.1 

The exercise will be performed in the workspace of CrypTool 2.1 using the components available in the 

toolkit. The most common component is the modular power amplification operator v = x^y. Its specific 

form is created after selecting a tray for numerical operations  where you can 

use the mouse to select the one- or two-argument action of a character: x+y, x-y, x*y, x/y, x^y mod p, 

GCD(x,y), LCM(x,y), integer square root(x), modular inverse (x, y) mod p  and the totient function 

phi(x), also known as the Euler function. The modular power block takes the form of 

 

and the description below Number Operator can be changed to better match the operation being 

performed, e.g.: v = x^y mod p. 

Input and output terminals provide the appropriate x and y arguments, the module p and the result v. 

Terminal recognition is done by indicating it with a mouse and reading a comment developed for a 

moment explaining the type of expected signal, as shown in the figure: 

 

As you can see, you will still need the Number Input windows and Number Output windows. Practical 

considerations also suggest that the two basic parameters p and g, which must reach each of the modular 

power blocks, should be made a kind of global variable. Leaving them in the usual form will significantly 

reduce the readability of the algorithm's block diagram by multiple overlapping and crossing of lines 

connecting the input/output terminals.  

Creating, for example with a parameter p a global variable Var and, similarly the g variable, 

 

Calculation of the common secret key by the communication participants

Every two people, such as A and B, calculate a common  KAB  key:

•  KAB  =  yB
x
A  mod  p  =  (gx

B)x
A  mod  p  =  gx

B
x
A  mod  p  (that's how Alice calulate it.)

•  KBA  =  yA
x
B  mod  p  = (gx

A)x
B  mod  p  =  gx

A
x
B  mod  p  (that's how Bob calulate it.)

•  KAB  = KBA  = K  is a session key  used to encrypt and decrypt correspondence between Alice

  and Bob.

•  They may modify it at any time, particularly in the next session.
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makes them accessible to the general public at any point in the working space and extracted by means 

of a Var window with an arrow pointing in the opposite direction as an extraction of content, as below. 

 

Finally, each window with connections can be moved and enlarged to read its full content. The handle 

in the lower right corner of each window/block is used for this purpose. 

Implementation of the exercise (demonstrative case) 

Based on the description of the algorithm and the remarks of the teacher, the student prepares a sketch 

of the block diagram together with the network of connections. It is suggested to place Var variables at 

the top of the screen (workspace) and place person A (Alice) on the left side, and B (Bob) on the right 

side of the screen.  

It is necessary to show the KAB and KBA session key values on both sides of the screen, i.e. Alice and 

Bob, to see that they are identical, even though the key was not transmitted openly on either side. 

To check the function of the Diffie-Hellman algorithm, you must perform the calculation with the 

following assumptions: 

➢ Alice and Bob agree to exchange the key and agree to the prime number p = 353 and g = 3 

(the student checks that g = 3 is actually the original primitive root of p = 353 by calling the 

link  http://www.bluetulip.org/2014/programs/primitive.html) 

➢ They select their private keys for themselves: A: xA= 97, B: xB= 233. They  

➢ They calculate the appropriate public keys on their basis: 

yA = 397mod 353 = 40  (Alice)   and   yB = 3233mod 353 = 248 (Bob) 

➢ They exchange public keys by sending each other. 

➢ They calculate the common session key separately: 

KAB= yB
x
A mod 353 = 24897mod 353 = 160 (Alice) 

KBA= yA
x
B mod 353 = 40233 mod 353 = 160 (Bob) 

Computational difficulty for the intruder 

Let's now pay attention to the computational difficulty for the intruder watching communication. It has 

the following information: p = 353, g = 3 yA = 40 and yB = 248. To obtain KAB, he must solve one of the 

congruence equations: 3amod 353 = 40 or 3bmod 353 = 248, in which the exponent a or b are discrete 

logarithms a = dlog3,353 40 and b = dlog3,353 248. There is nothing else to do but substitute subsequent 

values of the exponent until he gets the value 40 or 248. Such a number is 97 or 233 because only 397mod 

353 = 40 or 3233mod 353 = 248. At first glance it's simple, but for prime numbers with a few hundred 

digits, it's practically impossible. 

  

http://www.bluetulip.org/2014/programs/primitive.html
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For example: ID = 43997, then  
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 the leftmost prime number close to 1436 is p = 1433. If your 

number is out of scope of the table, please find in Internet the table with wider range of numbers, like 

the table of first 1000 primes. With p = 1433 go to the website showing all primitive roots of p, what in 

this exemplary case gives the list of 712 generators, while the greatest generator is g = 1430. For xA 

choose 43 and for xB the totient of 1430 equals 480, because (1430) = 480 (use the Totient.xlsm file). 

The content of report 

1. Fill the table below and send its picture showing all individual data and calculations of both 

keys KAB and KBA 

2. Attach the IDxxxxx.cwm file showing the use of Cryptools 2.1 software. 

Surname and name of the student  

ID number  

A specific sum of ID digits explained in 

Homework 3 and example above 
 

p = the prime number found in the way 

described in Homework 3 (RSA)  
 

g = the greatest primitive root of p  

xA - first two ID digits  

xB = (g)  

yA - show the formula and calculations  

yB - show the formula and calculations  

KAB - show the formula and calculations  

KBA- show the formula and calculations  

Is KAB = KBA? 
  YES  NO 

 

  

Part  of exercise  to be done  with  the  individual  set of data

Generally, you will be asked to perform DH_KX calculation  on the  base of data from  Homework 3

(RSA).  You will play  a double  role of Alice and Bob simultaneuosly.

On the base of prime number  p  already found in  Homework 3  (RSA), go  with your  p  number  to 

the website  of primitive roots  (already shown  in demonstrative part). Find then the  greatest  primitive 

root of  p  and  use  it  as  the  value  of  generator  g  of  the  multiplicative  group  Zp.  It  means  that  
consecutive

powers  of  g,  like  g,  g2,  g3,…  will  generate all  elements of  Zp  and  especially  gp  -  1  = 1  in algebra  mod  
p.

For  the values  of private keys  xA  choose  first two  digits of your  ID number  and  xB  =  (g).


