
I M P L E M E N TAT I O N

nother important activity of the design phase is designing the data storage com-
ponent of the system. This chapter describes the activities that are performed

when developing the data storage design. First, the different ways in which data can be
stored are described. Several important characteristics that should be considered when
selecting the data storage format are discussed. The process of revising the logical data
model into the physical data model is then outlined. Because one of the most popular data
storage formats today is the relational database, optimization of relational databases
from both storage and access perspectives is also included.

OBJECTIVES

■ Become familiar with several file and database formats.
■ Describe several goals of data storage.
■ Be able to revise a logical ERD into a physical ERD.
■ Be able to optimize a relational database for data storage and data access.
■ Become familiar with indexes.
■ Be able to estimate the size of a database.

CHAPTER OUTLINE

C H A P T E R 1 1

A

DATA STORAGE
DESIGN

Introduction
Data Storage Formats

Files
Databases
Selecting a Storage Format
Applying the Concepts at Tune Source

Moving from Logical to Physical Data
Models
The Physical Entity Relationship

Diagram

Revisiting the CRUD Matrix
Applying the Concepts at Tune Source

Optimizing Data Storage
Optimizing Storage Efficiency
Optimizing Access Speed
Estimating Storage Size
Applying the Concepts at Tune Source

Summary

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 405

INTRODUCTION

As explained in Chapter 8, the work done by any application program can be
divided into four general functions: data storage, data access logic, application
logic, and presentation logic. The data storage function is concerned with how data
is stored and handled by the programs that run the system.

Applications are of little use without the data that they support. How useful is
a multimedia application that can’t support images or sound? Why would users log
into a system to find information if it took them less time to locate the information
manually? It is essential to ensure that data storage is designed so that inefficient
systems, long response times, and difficult-to-access information (several hall-
marks of failed systems) are avoided.

As analysts turn their attention to the data storage that will be needed for the
new system, several things must be done. First, the data storage format for the new
system must be selected. This chapter describes a variety of data storage formats
and explains how to select the appropriate one for your application. There are two
basic types of data storage formats for application systems: files and databases.
There are multiple types of each storage format; for example, databases can be
object-oriented, relational, multidimensional, and so on. Each type has certain char-
acteristics that make it preferable for certain situations.

Following the selection of the data storage format, the data model created dur-
ing analysis is modified to reflect this implementation decision. The logical data
model will be converted into a physical data model. CASE repository information
is expanded to include much more detailed information about specific implementa-
tion details. The analysts will also want to ensure that the DFDs and ERDs balance
properly, so the CRUD matrix will be revised as necessary.

Finally, the selected data storage format must be designed to optimize its pro-
cessing efficiency. One of the leading complaints by end users is that the final sys-
tem is too slow. To avoid such complaints, project team members must allow time
during the design phase to carefully make sure that the file or database performs as
fast as possible. At the same time, the team must keep hardware costs down by
minimizing the storage space that the application will require. The goals of maximiz-
ing access to data and minimizing the amount of space taken to store data can conflict,
so designing data storage efficiency usually requires trade-offs. The team must
carefully review the availability, reliability, and security nonfunctional require-
ments to identify issues that produce trade-offs in performance, cost, and storage
space.

DATA STORAGE FORMATS

There are two main types of data storage formats: files and databases. Files are elec-
tronic lists of data that have been optimized to perform a particular transaction. For
example, Figure 11-1 shows a patient appointment file with information about
patient’s appointments, in the form in which it is used, so that the information can
be accessed and processed quickly by the system.

A database is a collection of groupings of information that are related to each
other in some way (e.g., through common fields). Logical groupings of information
could include such categories as customer data, information about an order, and
product information. A database management system (DBMS) is software that creates

406 Chapter 11 Data Storage Design

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 406

and manipulates these databases (Figure 11-2). End-user DBMSs such as Microsoft
Access support small-scale databases that are used to enhance personal productiv-
ity, and enterprise DBMSs, such as DB2, Jasmine, SQL Server, and Oracle, can
manage huge volumes of data and support applications that run an entire company.
An end-user DBMS is significantly less expensive and easier for novice users to use
than its enterprise counterpart, but it does not have the features or capabilities that
are necessary to support mission-critical or large-scale systems. Open-source
DBMS’s are also popular, such as MySQL.

The next section describes several different kinds of files and databases that
can be used to handle a system’s data storage requirements.

Files

A data file contains an electronic list of information that is formatted for a partic-
ular transaction, and the information is changed and manipulated by programs that
are written for those purposes. Files created by older, legacy systems are frequently
in a proprietary format, while newer systems use a standard format such as CSV
(comma separated value) or tab-delimited. Typically, files are organized sequen-
tially, and new records are added to the file’s end. These records can be associated
with other records by a pointer, which is information about the location of the
related record. A pointer is placed at the end of each record, and it “points” to the next
record in a series or set. Sometimes files are called linked lists because of the way
the records are linked together by the pointers. There are several types of files that

Data Storage Formats 407

FIGURE 11-1
Appointment File

Appointment
Date

First
Name

Last
Name

Phone
Number

Appointment
Time

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

2:30

2:30

2:45

3:00

3:00

3:30

3:45

3:30

4:00

4:00

4:30

4:30

8:30

8:30

8:30

8:45

8:45

9:30

Duration Reason

.25 hour

1 hour

.25 hour

1 hour

.5 hour

.5 hour

.75 hour

.25 hour

1 hour

.5 hour

1 hour

.5 hour

.25 hour

1 hour

.25 hour

.5 hour

1 hour

.5 hour

Patient
ID

758843

136136

544822

345344

236454

887777

951657

966233

223238

365548

398633

222577

858756

232158

244875

655683

447521

554263

Patrick

Adelaide

Chris

Felicia

Thomas

Ryan

Mike

Peter

Ellen

Jerry

Susan

Elizabeth

Elias

Andy

Rick

Eric

Jane

Trey

Dennis

Kin

Pullig

Marston

Bateman

Nelson

Morris

Todd

Whitener

Starsia

Perry

Gray

Awad

Ruppel

Grenci

Meier

Pace

Maxham

548-9456

548-7887

525-5464

548-9333

667-8955

525-4772

663-8944

667-2325

525-8874

548-9887

525-6632

667-8400

663-6364

525-9888

548-2114

667-0254

548-0025

663-8547

Doctor
ID

V524625587

T445756225

V524625587

B544742245

V524625587

V524625587

T445756225

T445756225

B544742245

V524625587

V524625587

T445756225

T445756225

V524625587

B544742245

T445756225

B544742245

V524625587

Doctor
Last

Name

Vroman

Tantalo

Vroman

Brousseau

Vroman

Vroman

Tantalo

Tantalo

Brousseau

Vroman

Vroman

Tantalo

Tantalo

Vroman

Brousseau

Tantalo

Brousseau

Vroman

Flu

Physical

Shot

Physical

Migraine

Muscular

Muscular

Shot

Physical

Flu

Minor surg

Migraine

Shot

Minor surg

Flu

Muscular

Physical

Flu

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 407

408 Chapter 11 Data Storage Design

Appointment
Date

Appointment
Time

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/23/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

11/24/2012

2:30

2:30

2:45

3:00

3:00

3:30

3:45

3:30

4:00

4:00

4:30

4:30

8:30

8:30

8:30

8:45

8:45

9:30

Duration Reason

.5 hour

1 hour

.25 hour

1 hour

.5 hour

.5 hour

.75 hour

.25 hour

1 hour

.5 hour

1 hour

.5 hour

.25 hour

1 hour

.25 hour

.5 hour

1 hour

.5 hour

Patient
ID

758843

136136

544822

345344

236454

887777

951657

966233

223238

365548

398633

222577

858756

232158

244875

655683

447521

554263

Doctor
ID

V524625587

T445756225

V524625587

B544742245

V524625587

V524625587

T445756225

T445756225

B544742245

V524625587

V524625587

T445756225

T445756225

V524625587

B544742245

T445756225

B544742245

V524625587

Flu

Physical

Shot

Physical

Migraine

Muscular

Muscular

Shot

Physical

Flu

Minor surg

Migraine

Shot

Minor surg

Flu

Muscular

Physical

Flu

Patient
ID

136136

222577

223238

232158

236454

244875

365548

345344

398633

447521

544822

554263

655683

758843

858756

887777

951657

966233

First
Name

Last
Name

Phone
Number

Adelaide

Tables related by patient ID Tables related by doctor ID

Elizabeth

Ellen

Andy

Thomas

Rick

Jerry

Felicia

Susan

Jane

Chris

Trey

Eric

Patrick

Elias

Ryan

Mike

Peter

Kin

Gray

Whitener

Ruppel

Bateman

Grenci

Starsia

Marston

Perry

Pace

Pullig

Maxham

Meier

Dennis

Awad

Nelson

Morris

Todd

 667-8400

548-7887

525-8874

667-8955

548-9887

548-9333

525-6632

548-0025

525-5464

663-8547

667-0254

548-9456

525-9888

663-6364

548-2114

525-4772

663-8944

667-2325

Doctor
ID

Last
Name

T445756225

B544742245

V524625587

Tantalo

Brousseau

Vroman

FIGURE 11-2
Appointment Database

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 408

differ in the way they are used to support an application: master files, look-up files,
transaction files, audit files, and history files.

Master files store core information that is important to the business and, more
specifically, to the application, such as order information or customer mailing infor-
mation. They usually are kept for long periods, and new records are appended to the
end of the file as new orders or new customers are captured by the system. If
changes need to be made to existing records, programs must be written to update
the old information.

Look-up files contain static values, such as a list of valid codes or the names
of the U.S. states. Typically, the list is used for validation. For example, if a cus-
tomer’s mailing address is entered into a master file, the state name is validated
against a look-up file that contains U.S. states to make sure that the value was
entered correctly.

A transaction file holds information that can be used to update a master file.
The transaction file can be destroyed after changes are added, or the file may be
saved in case the transactions need to be accessed again in the future. Customer
address changes, for one, would be stored in a transaction file until a program is run
that updates the customer address master file with the new information.

For control purposes, a company might need to store information about how
data changes over time. For example, as human resources clerks change employee
salaries in a human resources system, the system should record the person who
made the changes to the salary amount, the date, and the actual change that was
made. An audit file records “before” and “after” images of data as the data are
altered, so that an audit can be performed if the integrity of the data is questioned.

Sometimes files become so large that they are unwieldy, and much of the
information in the file is no longer used. The history file (or archive file) stores past
transactions (e.g., old customers, past orders) that are no longer needed by system
users. Typically, the file is stored off-line, yet it can be accessed on an as-needed
basis. Other files, such as master files, can then be streamlined to include only
active or very recent information.

Databases

There are many different types of databases that exist on the market today. In this
section, we provide a brief description of four databases with which you may come
into contact: legacy, relational, object, and multidimensional. You will likely
encounter a variety of ways to classify databases in your studies, but in this book
we classify databases in terms of how they store and manipulate data.

Legacy Databases The name legacy database is given to those databases which
are based on older, sometimes outdated technology that is seldom used to develop
new applications; however, you may come across them when maintaining or
migrating from systems that already exist within your organization. Two exam-
ples of legacy databases include hierarchical databases and network databases.
Hierarchical databases (e.g., IDMS) use hierarchies, or inverted trees, to repre-
sent relationships (similar to the one-to-many [1:M] relationships described in
Chapter 6). The record at the top of the tree has zero or more child records, which
in turn can serve as parents for other records (Figure 11-3). Hierarchical data-
bases are known for rapid search capabilities and were used in the early systems
in the airline industry.

Data Storage Formats 409

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 409

410 Chapter 11 Data Storage Design

Pretend that you are building a
Web-based system for the admissions office at your uni-
versity. The system will be used to accept electronic appli-
cations from students. All the data for the system will be
stored in a variety of files.

QUESTION:
Give an example using the preceding system for each of

the following file types: master, look-up, transaction,
audit, and history. What kind of information would
each file contain and how would the file be used?

11-1 STUDENT ADMISSIONS SYSTEMY O U R

T U R N

Product Product

1035 Black ...

1556 Fracken ...
235 11/23/11 ...

236 11/23/11 ...
243 11/26/11 ...

234 11/23/11 ...
242 11/26/11 ...

260 11/30/11 ...
275 12/7/11 ...

237 11/23/11 ...
245 11/26/11 ...

233 11/23/11 ...
244 11/26/11 ...
262 11/30/11 ...

2274 Goodin ...

4254 Bailey ...

9500 Chin ...

233 11/23/11 ...

234 11/23/11 ...

444 Wine Gift Pack

222 Bottle Opener

222 Bottle Opener
555 Cheese Tray

333 Jams & Jellies
222 Bottle Opener

555 Cheese Tray
222 Bottle Opener

111 Wine Guide

235 11/23/11 ...

236 11/23/11 ...

237 11/23/11 ...

444 Wine Gift Pack

333 Jams & Jellies
222 Bottle Opener
555 Cheese Tray

242 11/26/11 ...

243 11/26/11 ...

CustomerParents:

Children:

Order

OrderOrderOrder

Notice how Order serves as a child to Customer and a parent to Product.

Sample Records:

Customer as parent

Order as parent

FIGURE 11-3
Hierarchical Database

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 410

Hierarchical databases cannot efficiently represent many-to-many (M:N) rela-
tionships or nonhierarchical associations—a major drawback—so network databases
were developed to address this limitation (and others) of hierarchical technology.
Network databases (e.g., IDMS/R, DBMS 10) are collections of records that are
related to each other through pointers. Basically, a record is a member in one or
more sets, and the pointers link the members in a set together (Figure 11-4).

Both kinds of legacy systems can handle data quite efficiently, but they
require a great deal of programming effort. The application system software needs
to contain code that manipulates the database pointers; in other words, the applica-
tion program must understand how the database is built and be written to follow the
structure of the database. When the database structure is changed, the application
program must be rewritten to change the way it works, which makes the application
using the databases difficult to build and maintain. The code required to maintain
the pointers can be quite error prone, especially if bidirectional pointers were used.
Years ago, when hardware was expensive and programmer time was cheap, hierar-
chical and network databases were good solutions for large systems; however, as
hardware costs dropped and people costs skyrocketed, these solutions became much
less cost effective.

Relational Databases The relational database is the most popular kind of database
for application development today. Although it is less “machine efficient” than its
legacy counterparts, it is much easier to work with from a development perspective.
A relational database is based on collections of tables, each of which has a primary
key—a field(s) whose value is different for every row of the table. The tables are
related to each other by the placement of the primary key from one table into the
related table as a foreign key (Figure 11-5).

Most relational database management systems (RDBMSs) support referential
integrity, or the idea of ensuring that values linking the tables together through the

Data Storage Formats 411

Orders

Customers

Black

Set

Members

Pointer

235

Fracken

236 243 244 262237 275 234 242

245 260

Goodin Bailey Chin

233

FIGURE 11-4
Network Database

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 411

primary and foreign keys are valid and correctly synchronized. For example, if an
order-entry clerk using the tables in Figure 11-5 attempted to add order 254 for
customer number 1111, he or she would have made a mistake because no customer
exists in the Customer table with that number. If the RDBMS supported referential
integrity, it would check the customer numbers in the Customer table, discover that
the number 1111 is invalid, and return an error to the entry clerk. The clerk would
then go back to the original order form and recheck the customer information. Can
you imagine the problems that would occur if the RDBMS let the entry clerk add

412 Chapter 11 Data Storage Design

4254
9500
1556
2487
2243
1035
1123
9501
4453
9505
2282
5927
2241
2242
2274
9507
2264

Baily
Chin
Fracken
Hancock
Harris
Black
Williams
Kaplan
Min
Marvin
Lau
Lee
Jones
DeBerry
Goodin
Nelson
White

Ryan
April
Chris
Bill
Linda
John
Mary
Bruce
Julie
Sandra
Mark
Diane
Chris
Ann
Dan
Dave
Anthony

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11

$30.00 MC
$20.00 VISA
$20.00 VISA
$60.00 AMEX
$50.00 MC
$50.00 AMEX
$20.00 VISA
$40.00 MC
$30.00 VISA
$30.00 VISA
$20.00 VISA
$20.00 AMEX
$60.00 MC
$50.00 VISA
$50.00 AMEX
$50.00 AMEX
$20.00 MC
$10.00 MC
$60.00 MC
$40.00 AMEX

4254
9500
1556
2487
2243
1035
1556
1123
9501
4453
9505
2282
5927
2241
4254
2242
2274
9507
2487
2264

Mastercard
VISA
American Express

MC
VISA
AMEX

Order Number Date Cust ID Amount Payment Type

Payment Type Description

Payment Type is a
foreign key in Order.

Cust ID is a foreign key in Order.

Cust ID Last Name First Name

Customer Order

Payment Type

Payment Type is
the primary key of the
Payment Type table.

Referential integrity:
 • All Payment Type values
 in Order must exist first
 in the Payment Type table.
 • All Cust ID values in
 Order must exist first
 in the Customer table.

Cust ID is the primary
key of Customer

FIGURE 11-5
Relational Database

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 412

the order with the wrong information? There would be no way to track down the
name of the customer for order 254.

Tables have a set number of columns and a variable number of rows that contain
occurrences of data. Structured Query Language (SQL) is the standard language for
accessing the data in the tables, and it operates on complete tables, as opposed to
the individual records in the tables. Thus, a query written in SQL is applied to all
the records in a table all at once, which is different from a lot of programming
languages that manipulate data record by record. When queries must include infor-
mation from more than one table, the tables first are joined together on the basis of
their primary key and foreign key relationships and treated as if they were one large
table. Examples of RDBMS software are Microsoft Access, Oracle, DB2, Sybase,
Informix, Microsoft SQL Server, and MySQL.

Object Databases The next type of database is the object database, or object-
oriented database. (See Chapter 14 for more information on object-oriented
approaches.) The basic premise of object orientiation is that all things should be
treated as objects that have both data (attributes) and processes (behaviors). An
object changes or accesses its own attributes only through its behaviors. Objects
may communicate with each other for information or certain actions. Changes to
one object have no effect on other objects because the attributes and behaviors are
self-contained, or encapsulated, within each one. This encapsulation allows objects
to be reused to build many different systems, because they can be inserted and
removed from applications with few ripple effects. For example, a customer object
could be defined one time as having attributes (e.g., customer number, customer
name) and behaviors (e.g., inserting a customer, deleting a customer), and then this
customer object could be used to build any system that involves a customer.

In object databases, the combination of data and processes is represented by
object classes, which are the major categories of objects in the system, and a class
can contain a variety of subclasses, or special cases of that class. For example, a person
class can have subclasses of employee and customer because employee and customer
are special cases of person. An instance of data in object databases is referred to as
an instantiation (e.g., John Smith is an instantiation of the customer object), and the
relationships among classes are maintained by pointers (Figure 11-6).

Object-oriented database management systems (OODBMSs) are mainly used
to support multimedia applications or systems that involve complex data (e.g.,
graphics, video, and sound). Telecommunications, financial services, health care,
and transportation have been the most receptive to object databases. They are
becoming a popular technology for supporting electronic commerce, online cata-
logs, and large Web multimedia applications.

Although pure OODBMSs like Jasmine exist, most organizations invest in
hybrid OODBMS technology, which includes databases with both object and rela-
tional features. For instance, Oracle, a leader in the relational database market,
incorporates object functionality and capabilities into its relational product.

Although the market for OODBMSs is expected to grow, the market for the
technology is dwarfed by that for its relational and object-relational database coun-
terparts ($13.8 billion).1 For one, there are many more experienced developers and
tools in the relational database arena. Also, relational users find that OODBMS
technology comes with a very steep learning curve.

Data Storage Formats 413

1 Barbara Darrow, “Linux, SQL Server Drive Database Market: Report,” ChannelWeb, May 24, 2006.

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 413

414 Chapter 11 Data Storage Design

FIGURE 11-6
Object Database

Person Class Order Class

Customer
Class

Objects are linked by pointersObject Class

Object Subclass

Instantiation of the Customer Class

Smith4254

Cust ID Last Name

John

First Name

Multidimensional Databases A multidimensional database is a type of relational
database that is used extensively in data warehousing. Data warehousing is the
practice of taking data from a company’s transaction processing systems, trans-
forming the data (e.g., cleaning them up, totaling them, aggregating them), and then
storing the data for use in a data warehouse (i.e., a large database) that supports
decision support systems (DSS). A data warehouse itself usually relies on relational
technology as its storage format; however, companies can create data marts, which
are smaller databases based on data warehouse data. Typically, a data mart receives
downloads of data from the data warehouse regularly, and it supports DSS for a spe-
cific department or functional area of the company. For example, the marketing
department may have a data mart that supports its campaign management DSS.
Data marts are usually created with multidimensional databases.

In most cases, DSS is designed not to search for a particular record (e.g.,
“What did John Smith order on July 5, 2011?”), but rather to display information
that is aggregated (e.g., totaled or averaged) across many records (e.g., “What was
the average sales by quarter for product A?”) Thus, data marts that support a DSS
require that data be stored in a format in which they can be easily aggregated and
manipulated across a variety of dimensions (e.g., time, product, region, sales rep).
Unfortunately, legacy, object, and relational databases are designed and optimized
to provide access to individual records, not to store data to support aggregations of
data on multiple dimensions.

When data are first loaded into a multidimensional database, the database
precalculates the data across multiple dimensions and stores the answers, using
arrays or some other technique. Although the initial loading of the data can be
quite slow because of all the calculations that must take place, data access is
extremely fast because the “answers” already exist in the arrays. For example, the
cube in Figure 11-7 represents a multidimensional database containing data that

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 414

have been organized by customer, payment type, and order date. Precalculated
quantitative information (e.g., totals, averages) is stored at the intersection of the
dimensions (in each block), and the DSS directly accesses those blocks. Because
blocks contain precalculated information, there is much less processing that needs
to occur to provide the DSS with aggregated results.

Selecting a Storage Format

Each of the file and database data storage formats has its strengths and weaknesses,
and no one format is inherently better than the others. In fact, sometimes, a project
team will choose multiple data storage formats (e.g., a relational database for one
data store, a file for another, and a multidimensional database for a third). Thus, it
is important to understand the strengths and weaknesses of each format and when
to use each one. Figure 11-8 summarizes the characteristics of each and the char-
acteristics that can help identify when each type of storage is most appropriate.

Data Types The first issue is the type of data that will need to be stored in the sys-
tem. Most applications need to store simple data types, such as text, dates, and
numbers, and all DBMSs are equipped to handle this kind of data. The best choice
for simple data storage, however, usually is the relational database because the tech-
nology has matured over time and has continuously improved to handle simple data
very effectively.

Increasingly, applications are incorporating complex data, such as video,
images, or audio, and object databases are best able to handle data of this type.
Complex data are stored as objects that can be manipulated much faster than with
other storage formats. Other applications require aggregated data (i.e., information
that has been summed, averaged, or combined in some way). Multidimensional
databases are specially designed to store data so that they can be “sliced and diced”

Data Storage Formats 415

FIGURE 11-7
Multidimensional Database

Pay
m

en
t T

yp
e

O
rd

er
 D

at
e

Last quarter, how many customers
placed more than one order, using an

American Express card?

x

Customer

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 415

and examined across important business dimensions. If the system is being built for
analytical decision support, then this option likely will be most appropriate.

Type of Application System There are many different kinds of application systems
that can be developed. Transaction processing systems are designed to accept and
process many simultaneous requests (e.g., order entry, distribution, payroll). In
transaction processing systems, the data are continuously updated by a large num-
ber of users, and the queries that are asked of the systems typically are predefined
or targeted at a small subset of records (e.g., “List the orders that were back-ordered
today”; “What products did customer #1234 order on May 12, 2011?”).

Another set of application systems comprises those designed to support deci-
sion making, such as business intelligence management information systems
(MISs), executive information systems (EISs), and expert systems (ESs). These
decision support systems (DSS) are built to support decision makers who need to
examine large amounts of read-only historical data. The questions that they ask
often are ad hoc, and they include hundreds or thousands of records at a time (e.g.,
“List all customers in the west region who purchased a product costing more than
$500 at least three times”; “What products had increased sales in the summer
months but have not been classified as summer merchandise?”).

Transaction processing and DSSs thus have very different data storage
needs. Transaction processing systems need data storage formats that are tuned for
a lot of data updates and fast retrieval of predefined, specific questions. Files, rela-
tional databases, and object databases can all support these kinds of requirements.

416 Chapter 11 Data Storage Design

Multi-
Legacy Relational Object-Oriented dimensional

Files DBMS DBMS DBMS DBMS

Major strengths Files can be
designed for fast
performance;
good for short-term
data storage.

Very mature products Leader in the data-
base market; can
handle diverse
data needs

Able to handle com-
plex data

Configured to
answer decision
support questions
quickly

Major weaknesses Redundant data;
data must be
updated, using
programs.

Not able to store
data as efficiently;
limited future

Cannot handle
complex data

Technology is still
maturing; skills are
hard to find.

Highly specialized
use; skills are hard
to find

Data types
supported

Simple Not recommended
for new systems

Simple Complex (e.g.,
video, audio,
images)

Aggregated

Types of application
systems supported

Transaction
processing

Not recommended
for new systems

Transaction
processing and
decision making

Transaction
processing

Decision making

Existing data formats Organization
dependent

Organization
dependent

Organization
dependent

Organization
dependent

Organization
dependent

Future needs Limited future
prospects

Poor future prospects Good future
prospects

Uncertain future
prospects

Uncertain future
prospects

DBMS = database management system.

FIGURE 11-8
Comparison of Data Storage Formats

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 416

By contrast, systems to support decision making are usually only reading data
(not updating it), often in ad hoc ways. The best choices for these systems usu-
ally are relational databases and multidimensional databases because these for-
mats can be configured specially for needs that may be unclear and less apt to
change the data.

Existing Storage Formats The data storage format should be selected primarily on
the basis of the kind of data and application system being developed. Project teams
should also consider the existing data storage formats in the organization when
making design decisions. In this way, they can better understand the technical skills
that already exist and how steep the learning curve will be when the data storage
format is adopted. For example, a company that is familiar with relational databases
will have little problem adopting a relational database for the project, whereas an
object database may require substantial developer training. In the latter situation,
the project team may have to plan for more time to integrate the object database
with the company’s relational systems.

Future Needs The project team should be aware of current trends and technologies
that are being used by other organizations. A large number of installations of a type
of data storage format suggests that the selection of that format is “safe,” in that
needed skills and products are available. For example, it would probably be easier
and less expensive to find relational database expertise when implementing a sys-
tem than to find help with a multidimensional data storage format. Legacy database
skills, too, would likely be difficult to find.

Applying the Concepts at Tune Source

The Tune Source Digital Music Download system needs to effectively present tune
information to users and capture purchase data. Jason Wells, senior systems analyst
and project manager for the Digital Music Download system, recognized that these
goals were dependent on a good design of the data storage component for the new
application.

The project team met to discuss two issues that would drive the data storage
format selection: what kind of data would be in the system and how that data would
be used by the application system. Using a white board, they listed the ideas pre-
sented in Figure 11-9. The project team agreed that the bulk of the data in the sys-
tem would be text and numbers describing customers and purchases that are
exchanged with Web users. A relational database would be able to handle the data
effectively, and the technology would be well received because of its current use at
Tune Source.

The team recognized, however, that relational technology may not be
optimized to handle complex data such as the images, sound clips, and video clips
associated with the application. Jason asked Kenji, a project team member, to
investigate relational databases that offered object add-on products. It might be pos-
sible to invest in a relational database foundation and use its object functionality to
handle the complex data.

The team noted that one transaction file must be designed to handle the inter-
face with the Web shopping cart program. The team must design the file that stores
temporary, purchase information on the Web server as customers navigate through
the Web site.

Data Storage Formats 417

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 417

Of course, Jason realized that other data needs would arise over time, but
he felt confident that the major data issues were identified (e.g., the ability to handle
complex data) and that the data storage design would be selected on the basis of the
proper storage technologies.

MOVING FROM LOGICAL TO PHYSICAL DATA MODELS

During analysis, the analysts defined the data required by the application by creat-
ing logical entity relationship diagrams (ERDs). These logical models depict the
“business view” of the data, but omit any implementation details. Now, having
determined the data storage format, physical data models are created to show
implementation details and to explain more about the “how” of the final system.
These to-be models describe characteristics of the system that will be created, com-
municating the “systems view” of the new system.

The Physical Entity Relationship Diagram

Like the DFD, the ERD contains the same components for both the logical and
physical models, including entities, relationships, and attributes. The difference lies
in the fact that physical ERDs contain references to exactly how data will be stored
in a file or database table and that much more metadata is added to the CASE repos-
itory to describe the data model components. The transition from the logical to
physical data model is fairly straightforward; see the steps in Figure 11-10.

Step 1: Change Entities to Tables or Files The first step is to change all the entities
in the logical ERD to reflect the files or tables that will be used to store the data.

418 Chapter 11 Data Storage Design

Data Type Use Suggested Format

Customer information

Sales information

Tune information

Interests/Favorites Simple (mostly text)

Targeted promotion

information

Temporary

information

Simple (mostly text)

Simple (text and numbers)

Both simple and complex

(the system will contain

audio clips, video,

etc.)

Simple text, formatted

specifically for populating the

Web site with customized content

The system will

likely need to hold

information for temporary

periods (e.g., the shopping cart

will store purchase information

before the purchase is

actually completed)

Transactions

Transactions

Transactions

Transactions

Transactions

Transactions

Relational

Relational

Relational ?

Relational

Relational

Transaction file

FIGURE 11-9
Types of Data in the Digital Music
Download System

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 418

Usually, project teams adhere to strict naming conventions for such things as
tables, files, and fields, so the physical ERD would use the names that the real
components will have when implemented. Metadata for the tables and files, like
the expected size of the table, are added to the CASE repository. See Figure 11-11
for a physical ERD from the Lawn Chemical Request system that was described
in Chapters 5 and 6.

Step 2: Change Attributes to Fields Second, change the attributes to fields, which
are columns in files or tables, and add information like the field’s length, data type,
default value, and valid value to the CASE repository. There are a number of dif-
ferent data types that fields can have, such as number, decimal, longint, character,
and variable character. The analyst inputs the data type along with the size of the
field into the CASE tool so that the system can be designed for the right kind of
information. A default value specifies what should be placed in a column if no value
is explicitly supplied when a record is inserted into the table. A valid value is a fixed
list of valid values for a particular column, or an expression to define some form of
data validation code for a column or table. Figure 11-12 shows a variety of metadata
describing the cust_id field in an Oracle Customer table.

Inputting complete information regarding the tables and columns into the CASE
repository is very important. Many CASE tools will actually generate code to build
tables and create files for the new system according to the information they contain for
the physical models. By taking time to describe the physical data model in detail, the
analyst can save a lot of time when the system is ready to be implemented.

Step 3: Add Primary Keys As a third step, the attributes that served as identifiers
on the logical ERD are converted into primary keys, which are fields that contain a

Moving from Logical to Physical Data Models 419

Change entities to tables or files. Beginning with the logical entity relationship diagram,
change the entities to tables or files and update the
metadata.

Change attributes to fields. Convert the attributes to fields and update the metadata.
Add primary keys. Assign primary keys to all entities.
Add foreign keys. Add foreign keys to represent the relationships among

entities.
Add system-related components. Add system-related tables and fields.

Step Explanation

FIGURE 11-10
Steps to Moving from Logical to Physical
Entity Relationship Diagram

*LCA_ID: VARCHAR(4)
LCA_Name: VARCHAR(20)
LCA_HireDate: DATETIME
LCA_Qualification: VARCHAR(30)
LCA_CellPhone: VARCHAR(10)

Lawn Chemical Applicator

*LCA_ID: VARCHAR(4) (FK)
*CHM_ID: VARCHAR(10) (FK)
*RequestDate: DATETIME
RequestQuantity: INTEGER

Chemical Request

*CHM_ID: VARCHAR(10)
CHM_Name: VARCHAR(25)
CHM_Description: VARCHAR(30)
CHM_ApprovalStatus: BOOLEAN
CHM_Unit: VARCHAR(10)

Chemical

makes

is made by

involves

involved in

FIGURE 11-11
Lawn Chemical Request System Physical ERD

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 419

unique value for each record in the file or table. For instance, Social Security Number
would serve as a good primary key for a customer table if every customer record in
the table will contain a unique value in the Social Security Number field. A unique
identifier is mandatory for every table placed on the physical ERD; therefore, primary
key fields must be created for entities that did not have identifiers previously. For
example, if we did not choose an identifier for the customer entity on the logical
ERD, we would now create a system-generated field (e.g., cust_id) that could serve
as the primary key for the customer table. This field would have no meaning or purpose
other than ensuring that each record has a field that contains a unique value.

Step 4: Add Foreign Keys The relationships on the logical ERD show that pairs
of entities are associated with each other, and in step 4, the analyst specifies how

Naming conventions
for fields: 4 digits of
table name followed
by the field name.

The key signifies
that cust_id is a
primary key.

The analyst
can develop
a validation
rule to be
applied to
this field.

Notice that this will
be implemented
in Oracle.

No null, or blank,
values will be accepted
into the cust_id field.

CHAR stands
for “character”
data type; the
10 stands for
the number of
characters.

The analyst
can specify
a default
value that
appears for
this field.

FIGURE 11-12
Metadata for a cust_id Field

420 Chapter 11 Data Storage Design

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 420

Moving from Logical to Physical Data Models 421

the associations are going to be maintained from a technical standpoint. In a rela-
tional database, for example, an association between two tables is maintained by a
technique referred to as a foreign key. A foreign key is the primary key field(s)
from one table that is repeated in another table to provide a common field between
the two tables. The common field contains values that match a record in one table
to a record in the other. For example, if we were to create two tables called Cus-
tomer and Order that were related to each other, we could include the primary key
field from Customer (cust_id) in the Order table as well. In this way, if we want to
find out customer information (e.g., name, address, phone number) when looking
at someone’s order, we can use the value for cust_id that appears in the Order table
to go back to the Customer table to locate the appropriate information.

Thus, on the physical ERD, the primary key fields in the parent tables (the “1”
end of the relationship) are copied and placed as fields in the child tables (the
“many” end of the relationship) and designated as foreign keys. The fields will con-
tain values that are common between the two tables. Many times, the CASE tools
that are used to draw ERDs will “migrate” foreign keys to the appropriate tables on
the model automatically, and the database technology will ensure that the values in
the two fields match appropriately, helping to ensure referential integrity.

Step 5: Add System-Related Components As the fifth and final step, components
are added to the physical ERD to reflect special implementation needs, including
components that were included on the DFD. We have mentioned balance between
DFDs and ERDs in earlier chapters, and this balance must be maintained in the
physical models as well. Therefore, implementation-specific data stores and data
elements from the physical DFD should be included on the ERD as tables and
fields. For example, in Figure 10-2 we added the Tune to buy history data store to
the physical DFD to serve as a “backup” for tunes that are sent to the purchase tunes
process. Now we will need to add a tune to buy batch history file to the physical
ERD model along with its fields and relationships.

Revisiting the CRUD Matrix

As discussed in Chapter 6, it is important to verify that the system’s DFD and ERD
models are balanced. In other words, we must ensure that data needed in the sys-
tems processes are stored and that all stored data are used by at least one process.
The CRUD matrix was introduced in Chapter 6 as a tool showing how data are used
by processes in the system.

Often the CRUD matrix is created during analysis on the basis of the logical
process and data models. In design, as these models are converted to physical mod-
els, changes in the form of new processes, new data stores, and new data elements
may occur. The CRUD matrix should be revised at this point to include the new com-
ponents and ensure that balance is maintained between the physical ERD and DFDs.

If the CRUD matrix was not developed during analysis, it should be devel-
oped now prior to implementation. The matrix shows exactly how data are used and
created by the major processes in the system, so it serves as a very useful compo-
nent of the system design materials.

Applying the Concepts at Tune Source

Let us now apply some of the concepts that you have learned by creating a physical
ERD, using the logical ERD that was created in Chapter 6.

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 421

When we use the logical model as a starting point, the first step is to rename the
entities to match with the tables or files that will be used by the system (Figure 11-13).
Outwardly, the data model does not look very different after this step, but notice that
several entities have been renamed to be consistent with Tune Source’s table naming
standards. At this time, we will need to include metadata for the tables, such as their
estimated size.

Next, the attributes for the entities become fields with such characteristics as
data type, length, and valid values, and this is recorded in the CASE repository. For
example, CUS_state in the CUSTOMER table will be a text field with a size of two

422 Chapter 11 Data Storage Design

FIGURE 11-13
Tune Source Physical ERD

TUNES

*TUN_ID: VARCHAR(8)
TUN_title: VARCHAR(30)
TUN_artist: VARCHAR(25)
TUN_genre: VARCHAR(20)
TUN_length: TIME
TUN_price: DECIMAL(5,2)
TUN_mp3short: OBJECT
TUN_mp3full: OBJECT

CUSTOMER

*CUS_number: VARCHAR(8)
CUS_lastname: VARCHAR(25)
CUS_firstname: VARCHAR(30)
CUS_address: VARCHAR(100)
CUS_city: VARCHAR(30)
CUS_state: CHAR(2)
CUS_zipcode: VARCHAR(9)
CUS_phone: VARCHAR(10)
CUS_email: VARCHAR(50)
CUS_username: VARCHAR(30)
CUS_password: VARCHAR(30)

TUNESALES

*SAL_number: VARCHAR(8)
 SAL_date: DATETIME
CUS_username: VARCHAR(30) FK
 TUN_ID: VARCHAR(8) FK

*TUN_ID: VARCHAR(8) FK
*FAV_dateadded: DATETIME

CUSFAVS

*CUS_number: VARCHAR(8) FK
*TUN_ID: VARCHAR(8) FK
*INT_datecreated: DATETIME

CUSINTS

*CUS_number: VARCHAR(8) FK

targets

is targeted by

creates

is created by

specifies

is specified in

purchases

is purchased in

lists

is listed by

includes

is included in

promotes

is promoted by

makes

is made by

PROMOTIONS

*PRO_code: VARCHAR(8)
CUS_number: VARCHAR(8) FK
TUN_ID: VARCHAR(8) FK
PRO_price: DECIMAL(5,2)
PRO_term: NUMBER(3)

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 422

Moving from Logical to Physical Data Models 423

characters, and valid values are the 50 two-letter state abbreviations. If most cus-
tomers at Tune Source live in the state of California, then it may be worthwhile to
make CA the default value for this field. However, since this is an Internet-based
system, this assumption may not be valid. Figure 11-14 is an example of the CASE
repository entry for the CUS_state field.

Step 3 suggests that we change the identifiers in the logical ERD to become
primary keys, and entities without identifiers need to have a primary key created.
At this time, we also can decide to use a system-generated primary key if it is more
efficient than using logical attributes from the logical model.

The relationships on the logical ERD indicate where foreign key fields need
to be placed. For example, CUS_number is placed as a field in TUNESALES to
serve as the link between two entities, and TUNESALES gets the extra field
because it is the child table (it exists at the “many” end of the relationship). Simi-
larly, TUN_ID is placed in the TUNESALES table.

Finally, system-related components are included within the model. For exam-
ple, fields that will capture when a record was last inserted or updated were added
to many of the tables.

The project team also updated the CRUD matrix for the system. Figure 11-15
shows the CRUD matrix that was created for the Tune Source search and browse
tunes process. Look at the original process models, and notice how the first process
is merely reading information from data stores. This is illustrated on the CRUD
matrix by an “R” placed in the relevant intersections of the matrix. Can you tell how
data are used by the remaining processes?

FIGURE 11-14
Computer-Aided Software Engineering Repository Entry for cus_state Field

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 423

OPTIMIZING DATA STORAGE

The selected data storage format is now optimized for processing efficiency. The
optimization methods will vary with the format that you select; however, the basic
concepts will remain the same. Once you understand how to optimize a particular
type of data storage, you will have some idea as to how to approach the optimiza-
tion of other formats. This section focuses on the optimization of the most popular
data storage format: relational databases.

There are two primary dimensions in which to optimize a relational data-
base: for storage efficiency and for speed of access. Unfortunately, these two
goals often conflict because the best design for access speed may take up a great
deal of storage space as compared with other less speedy designs. This section
describes how to use normalization (Chapter 6) to optimize data storage for stor-
age efficiency. The next section presents design techniques, such as denormal-
ization and indexing, that will quicken the performance of the system. Ultimately,
the project team will go through a series of trade-offs until the ideal balance
between both optimization dimensions is reached. Finally, the project team must
estimate the size of the data storage needed to ensure that there is enough capacity
on the server(s).

424 Chapter 11 Data Storage Design

1.1 Load Web

Site

1.2 Process

Search Requests

1.3 Process

Tune Selection

PROMOTIONS

R

R

R

R

PRO_code

CUS_number

R

R

R

R

C

C

C

C

C

C

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

R

TUN_ID

PRO_price

PRO_term

CUS_number

CUSFAVS

TUN_ID

FAV_dateadded

TUNES

TUN_ID

TUN_title

TUN_artist

TUN_genre

TUN_length

TUN_price

TUN_mp3short

TUN_mp3full

CUSINTS

INT_datecreated

TUN_ID

CUS_numberFIGURE 11-15
CRUD Matrix for Search and Browse
Tunes Process

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 424

Optimizing Storage Efficiency

The most efficient tables in a relational database in terms of storage space have no
redundant data and very few null values, because the presence of these suggest that
space is being wasted (and more data to store means higher data storage hardware
costs). For example, notice that the sample order table in Figure 11-16 repeats cus-
tomer information, such as name and state, each time a customer places an order,
and it contains many null values in the last four columns. These null values occur
whenever a customer places an order for less than three items (the maximum num-
ber on an order).

In addition to wasting space, redundancy and null values also allow more
room for error and increase the likelihood that problems will arise with the integrity
of the data. What if customer 1135 moves from Maryland to Georgia? In the case
of Figure 11-16, a program must be written to ensure that all instances of that cus-
tomer are updated to show “GA” as the new state of residence. If some of the
instances are overlooked, then the table will contain an update anomaly whereby
some of the records contain the correctly updated value for state and other records
contain the old information.

Optimizing Data Storage 425

In Chapter 6, you were asked to cre-
ate a logical entity relationship diagram (ERD) for a char-
ter company that owns boats that are used to charter trips
to the islands (“Your Turn 6-8”). The company has created
a computer system to track the boats it owns, including
each boat’s ID number, name, and seating capacity. The
company also tracks information about the various
islands, such as name and population. Every time a boat
is chartered, it is important to know the data about the

trip that takes place and the number of people on the trip.
The company also keeps information about each captain,
such as Social Security Number, name, birthdate, and
how to contact next of kin. Boats travel to only one island
per visit.

Create a physical ERD for this situation. Compare
the diagram that you drew to the logical diagram that
you created in Chapter 6.

11-2 ISLAND CHARTERSY O U R

T U R N

A major public university graduates
approximately 10,000 students per year, and its devel-
opment office has decided to build a Web-based system
that solicits and tracks donations from the university’s
large alumni body. Ultimately, the development officers
hope to use the information in the system to better under-
stand the alumni giving patterns so that they can improve
giving rates.

QUESTION:
1. What kind of system is this?
2. Does it have characteristics of more than one?
3. What different kinds of data will this system use?
4. On the basis of your answers, what kind of data stor-

age format(s) do you recommend for this system?

11-3 DONATION TRACKING SYSTEMY O U R

T U R N

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 425

426 Chapter 11 Data Storage Design

Null values threaten data integrity because they are difficult to interpret. A
blank value in the customer order table’s product fields could mean that (1) the cus-
tomer did not want more than one or two products on his or her order, (2) the oper-
ator forgot to enter in all three products on the order, or (3) the customer canceled
part of the order and the products were deleted by the operator. It is impossible to
be sure of the actual meaning of the null values.

For both of these reasons—wasted storage space and data integrity threats—
project teams should remove redundancy and null values from data storage design.
During the design phase, the logical data model is used to examine the data storage
design and optimize it for storage efficiency. If you follow the modeling instruc-
tions and guidelines that were presented in Chapter 6, you will have little trouble
creating a design that is highly optimized in this way, because a well-formed logi-
cal data model does not contain redundancy or many null values.

Sometimes, however, a project team starts with a logical model that was
poorly constructed or with a model that was created for files or a nonrelational type

1135
1135
1135
1123
1123
1123
1123
2242
2242
2242
2242
2242
2242
2242
2242
4254
4254
4254
9500
9500
9500
9500

555 Cheese Tray
444 Wine Gift Pack
222 Bottle Opener
444 Wine Gift Pack
222 Bottle Opener
222 Bottle Opener
555 Cheese Tray
555 Cheese Tray
111 Wine Guide
444 Wine Gift Pack
222 Bottle Opener
222 Bottle Opener
222 Bottle Opener
222 Bottle Opener
333 Jams & Jellies
555 Cheese Tray
333 Jams & Jellies
222 Bottle Opener
222 Bottle Opener
333 Jams & Jellies
222 Bottle Opener
111 Wine Guide

444 Wine Gift Pack

444 Wine Gift Pack
444 Wine Gift Pack

333 Jams & Jellies

111 Wine Guide

$50.00
$40.00
$20.00
$40.00
$20.00
$20.00
$50.00
$50.00
$50.00
$40.00
$20.00
$20.00
$60.00
$60.00
$30.00
$50.00
$30.00
$60.00
$20.00
$30.00
$20.00
$10.00

Product Product Desc Product Product Desc Product Product Desc

239
260
273
241
262
287
290
234
237
238
245
250
252
253
297
243
246
248
235
242
244
251

11/23/11
11/24/11
11/27/11
11/23/11
11/24/11
11/27/11
11/30/11
11/23/11
 11/7/11
11/10/11
11/11/11
11/18/11
11/22/11
11/23/11
11/24/11
11/11/11
11/18/11
11/22/11
11/17/11
11/23/11
11/24/11
11/27/11

Order Number Date Cust ID Last Name First Name State Amount

 0.05
 0.05
 0.05
 0.08
 0.08
 0.08
 0.08
0.065
0.065
0.065
0.065
0.065
0.065
0.065
0.065
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05
 0.05

Tax Rate

Redundant data Null cells

CUSTOMER ORDER

Order Number

Date
Cust ID
Last Name
First Name
State
Amount
Tax Rate
Product 1
Product Description 1
Product 2
Product Description 2
Product 3
Product Description 3

Black
Black
Black
Williams
Williams
Williams
Williams
DeBerry
DeBerry
DeBerry
DeBerry
DeBerry
DeBerry
DeBerry
DeBerry
Bailey
Bailey
Bailey
Chin
Chin
Chin
Chin

John
John
John
Mary
Mary
Mary
Mary
Ann
Ann
Ann
Ann
Ann
Ann
Ann
Ann
Ryan
Ryan
Ryan
April
April
April
April

MD
MD
MD
CA
CA
CA
CA
DC
DC
DC
DC
DC
DC
DC
DC
MD
MD
MD
KS
KS
KS
KS

FIGURE 11-16
Optimizing Data Storage

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 426

of data storage format. In these cases, the project team should follow the steps of
the normalization process described in Chapter 6 (see Figure 6A-1). Normalization
is the best way to optimize data storage for efficiency.

Optimizing Access Speed

After you have optimized your data model design for data storage efficiency, the end
result is data that are spread out across a number of tables. When data from multiple
tables must be accessed or queried, the tables first must be joined together. For exam-
ple, in Figure 11-2, before the office manager can print out a list of appointments with
patient and doctor names on it, the patient and doctor tables need to be joined with the
appointment table on the basis of the patient ID and doctor ID fields. Only then can
appointment, patient, and doctor information be included in the query’s output. Joins
can take a lot of time, especially if the tables are large or if many tables are involved.

Consider an order system that stores information about 10,000 different prod-
ucts, 25,000 customers, and 100,000 orders, each order containing three products,
on average. If an analyst wanted to investigate whether there were regional differ-
ences in buying preferences, he or she would need to combine all of the tables to
be able to look at products that have been ordered, while knowing the location of
the customers placing the orders. A query of this information would result in a huge
table with 300,000 rows (i.e., the number of products that have been ordered) and
many columns representing columns from all three tables combined.

There are several techniques that the project team can use to try to speed up
access to the data: denormalization, clustering, indexing, and estimating the size of
the data for hardware planning purposes.

Denormalization After the logical data model is optimized in terms of data storage,
the project team may decide to denormalize, or add redundancy back into the
design that is depicted in the physical data model. Denormalization reduces the
number of joins that must be performed in a query, thus speeding up data access.
Figure 11-17 shows a denormalized physical data model for customer orders.

Optimizing Data Storage 427

*ORD_number: CHAR(18)

ORDER

CUS_id: CHAR(9)(FK)
ORD_date: DATE
ORD_amount: NUM(6,2)
CUS_firstname: VARCHAR(15)
CUS_lastname: VARCHAR(20)

*CUS_id: CHAR(9)

CUSTOMER

places/
is placed by

Customer name will be stored
in both tables.

CUS_lastname: VARCHAR(20)

CUS_firstname: VARCHAR(15)

CUS_address: VARCHAR(50)

CUS_city: VARCHAR(25)

CUS_state: CHAR(2)

CUS_zipcode: VARCHAR(9)

CUS_phone: VARCHAR(10)

FIGURE 11-17
Denormalized Data Model

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 427

428 Chapter 11 Data Storage Design

The customer name was added back into the Order table because the project team
learned during the analysis phase that queries about orders usually require the cus-
tomer’s name. Instead of joining the Order table repeatedly to the Customer table,
the system now needs to access only the Order table because it contains all the rel-
evant information.

Of course, denormalization should be applied sparingly, for the reasons
described in the previous section, but it is ideal in situations in which information
is queried frequently yet updated rarely. There are four cases in which you may rely
on denormalization to reduce joins and improve performance (see Figure 11-18).
First, denormalization can be applied in the case of look-up tables, which are tables
that contain descriptions of values (e.g., a table of product descriptions, a table of
payment types). Because descriptions of codes rarely change, it may be more effi-
cient to include the description along with its respective code in the main table, to
eliminate the need to join the look-up table each time a query is performed.

Second, 1:1 relationships are good candidates for denormalization. Although
logically, two entities should be separated, from a practical standpoint the informa-
tion from both entities may be regularly accessed together. Think about an order and
its shipping information. Logically, it may make sense to separate the attributes
related to shipping into a separate entity, but as a result, the queries regarding ship-
ping likely will always need a join to the Order table. If the project team finds that
certain shipping information, such as state and shipping method, are needed when
orders are accessed, they may decide to combine the entities or include some ship-
ping attributes in the order entity.

Third, at times it will be more efficient to include a parent entity’s attributes in
its child entity on the physical data model. For example, consider a customer table and
an order table that share a 1:N relationship, with customer as the parent and order as
the child. If queries regarding orders continuously require customer information, the
most popular customer fields can be placed in order to reduce the required joins to the
customer table, as was done with customer name in Figure 11-18.

Finally, denormalization is applied when a popular data modeling technique
called star schema design is used.2 Learning how to model with star schema is
beyond the scope of this book, but there are a number of Web resources and books
available that are listed on the textbook Web site. Basically, star schema is a way to
model data whereby the data are denormalized to speed up data access for DSS. It
uses two kinds of tables—fact tables and dimension tables—to store numerical,
additive, and descriptive data, respectively. Star schema modeling is the way in

2 A good book on star schema design is that by Claudia Imhoff, Nicholas Galemmo, and Jonathan Geiger,
Mastering Data Warehouse Design: Relational and Dimensional Techniques, John Wiley & Sons, 2003.

Consider the logical data model
that you created in Chapter 6 for “Your Turn 6-7.”
Examine the model and describe possible opportunities
for denormalization.

QUESTION:
How would you denormalize the physical data model,

and what are the benefits of your changes?

11-4 DENORMALIZING A STUDENT ACTIVITY FILEY O U R

T U R N

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 428

FIGURE 11-18
Reasons to Denormalize

*ORD_number: CHAR(18)

ORDER

ORD_date: DATE

ORD_amount: NUM(6,2)

PAY_type: CHAR(2)(FK)

PAY_description: VARCHAR(15)

*PAY_type: CHAR(2)

PAYMENT_TYPE

PAY_description: VARCHAR(15)

is paid by

pays

Include a

codeʼs

description in

the table using

that code if the

description is

often used.

Look-up

Table

Combine tables

if they are

related 1:1 and

if they usually

are accessed

together.

1:1

Relationships

Reason Description Example

*ORD_number: CHAR(18)

ORDER
SHIPMENT

ORD_date: DATE

ORD_amount: NUM(6,2)

SHI_state: CHAR(2)

SHI_method: CHAR(4)

ORD_num: CHAR(18) (FK)

*SHI_id: CHAR(9)

is sent by

sends
SHI_address: VARCHAR(50)

SHI_city: VARCHAR(25)

SHI_state: CHAR(2)

SHI_zip: VARCHAR(9)

SHI_method: CHAR(4)

Place fields

from the parent

(1) table into

the child (N)

table if the

parent fields are

used frequently

with child

information.

1:N

Relationships

*CUS_id: CHAR(9)

CUSTOMER

CUS_firstname: VARCHAR(15)

CUS_lastname: VARCHAR(20)

CUS_address: VARCHAR(50)

CUS_city: VARCHAR(25)

CUS_state: CHAR(2)

CUS_zipcode: VARCHAR(9)

CUS_phone: VARCHAR(10)

*CUS_id: CHAR(9)

CUS_firstname: VARCHAR(15)

CUS_lastname: VARCHAR(20)

CUS_address: VARCHAR(50)

CUS_city: VARCHAR(25)

CUS_state: CHAR(2)

CUS_zipcode: VARCHAR(9)

CUS_phone: VARCHAR(10)

CUS_gender: CHAR(1)

CUS_birthdate: DATE

*ORD_number: CHAR(18)

ORDER

CUS_id: CHAR(9)(FK)

ORD_date: DATE

ORD_amount: NUM(6,2)

CUS_firstname: VARCHAR(15)

CUS_lastname: VARCHAR(20)

places

is placed by

Data marts

often are

modeled with

star schema

design, which

uses

denormalization

to maximaze

DSS query

performance.

Star Schema

Design
CUSTOMER

*TIM_date: DATE

TIM_dayofweek: NUM(1)

TIM_weeknumber: NUM(2)

TIM_monthnumber: NUM(2)

TIM_quarter: NUM(1)

TIM_fiscalyear: NUM(4)

TIM_holidayflag: CHAR(1)

TIME

*FACT_id: CHAR(8)

FACT_orderamount: NUM(6,2)

FACT_ordercost: NUM(6,2)

CUS_id: CHAR(9)(FK)

TIM_date: DATE (FK)

ORD_number: CHAR(18)

*ORD_number: CHAR(18)

ORD_paytype: CHAR(2)

ORD_shipstate: CHAR(2)

ORD_shipmethod: VARCHAR(8)

FACT

dimension_1 dimension_3

dimension_2

ORDER

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 429

which relational databases can be designed to emulate a multidimensional database.
See Figure 11-18 for an example of a star schema design of a customer order data-
base. The fact table contains order amount and cost (i.e., additive data), and the
other tables contain information describing different dimensions of an order: the
customer, the order itself, and time.

Clustering Speed of access also is influenced by the way in which the data are
retrieved. Think about going shopping in a grocery store. If you have a list of items
to buy, but you are unfamiliar with the store’s layout, then you need to walk down
every aisle to make sure that you don’t miss anything from your list. Likewise, if
records are arranged on a hard disk in no particular order (or in an order that is
unrelated to your data needs), then any query of the records results in a table scan
in which the DBMS has to access every row in the table before retrieving the result
set. Table scans are the most inefficient of data retrieval methods.

One way to improve access speed is to reduce the number of times that the
storage medium must be accessed during a transaction. This can be accomplished
by clustering records together physically so that like records are stored close
together. With intrafile clustering, similar records in the table are stored together in
some way, such as in order by primary key or, in the case of a grocery store, by item
type. Thus, whenever a query looks for records, it can go directly to the right spot
on the hard disk (or other storage medium) because it knows in what order the
records are stored, just as we can walk directly to the bread aisle in the store to pick
up a loaf of bread. Interfile clustering combines records from more than one table
that typically are retrieved together. For example, if customer information is usually
accessed with the related order information, then the records from the two tables
may be physically stored in a way that preserves the customer order relationship.
Returning to the grocery store scenario, an interfile cluster would be similar to stor-
ing peanut butter, jelly, and bread next to each other in the same aisle because they
are usually purchased together, not because they are similar types of items. Of
course, each table can have only one clustering strategy because the records can be
arranged physically in only one way.

A Virginia-based mail-order company
sends out approximately 25 million catalogs each year,
using a customer table with 10 million names. Although
the primary key of the customer table is customer identifi-
cation number, the table also contains an index of cus-
tomer last names. Most people who call to place orders
remember their last name, but not their customer identifi-
cation number, so this index is used frequently.

An employee of the company explained that
indexes are critical to reasonable response times. A fairly
complicated query was written to locate customers by the

state in which they lived, and it took over three weeks to
return an answer. A customer state index was created,
and that same query provided a response in 20 minutes;
that’s 1512 times faster!

QUESTION:
As an analyst, how can you make sure that the proper

indexes have been put in place so that users are not
waiting for weeks to receive the answers to their
questions?

11-A MAIL-ORDER INDEX

IN ACTION

CONCEPTS

430 Chapter 11 Data Storage Design

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 430

Optimizing Data Storage 431

Indexing A time saver that you are familiar with is an index located in the back of
a textbook, which points you directly to the page or pages that contain your topic
of interest. Think of how long it would take to find all of the times that relational
database appears in this textbook if you didn’t have the index to rely on. An index
in data storage is like an index in the back of a textbook; it is a minitable that con-
tains values from one or more columns in a table and the location of the values
within the table. Instead of paging through the entire textbook, you can move
directly to the right pages and get the information you need. Indexes are one of the
most important ways to improve database performance. Whenever you have per-
formance problems, the first place to look is an index.

A query can use an index to find the locations of only those records that are
included in the query answer, and a table can have an unlimited number of indexes.
Figure 11-19 shows an index that orders records by payment type. A query that
searches for all of the customers who used American Express can use this index to
find the locations of the records that contain American Express as the payment type
without having to scan the entire order table.

Project teams can make indexes perform even faster by placing them into the
main memory of the data storage hardware. Retrieving information from memory
is much faster than from another storage medium like a hard disk—think about how
much faster it is to retrieve a phone number that you have memorized versus one
that you need to look up in a phone book. Similarly, when a database has an index
in memory, it can locate records very, very quickly.

Of course, indexes require overhead in that they take up space on the storage
medium. Also, they need to be updated as records in tables are inserted, deleted, or
changed. Thus, although indexes lead to faster access to the data, they slow down
the update process. In general, you should create indexes sparingly for transaction
systems or systems that require a lot of updates, but apply indexes generously when
designing systems for decision support (Figure 11-20).

Usually, CASE tools allow you to define indexes and clustering strategies
within the design of the physical data model. Figure 11-21 shows the index
screen in one CASE tool (ERwin) for the order table. In this example, three

234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253

11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/23/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11
11/24/11

$30.00 MC
$20.00 VISA
$20.00 VISA
$60.00 AMEX
$50.00 MC
$50.00 AMEX
$20.00 VISA
$40.00 MC
$30.00 VISA
$30.00 VISA
$20.00 VISA
$20.00 AMEX
$60.00 MC
$50.00 VISA
$50.00 AMEX
$50.00 AMEX
$20.00 VISA
$10.00 VISA
$60.00 VISA
$40.00 AMEX

AMEX
AMEX
AMEX
AMEX
AMEX
AMEX
MC
MC
MC
MC
MC
MC
MC
VISA
VISA
VISA
VISA
VISA
VISA
VISA

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

4254
9500
1556
2487
2243
1035
1556
1123
9501
4453
9505
2282
5927
2241
4254
2242
2274
9507
2487
2264

Order Number

ORDER TABLE

Date Cust ID Amount Payment TypePayment Type

PAYMENT TYPE INDEX

Pointer

FIGURE 11-19
Payment Type Index

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 431

432 Chapter 11 Data Storage Design

• Use indexes sparingly for transaction systems.
• Use many indexes to improve response times in decision support systems.
• For each table, create a unique index that is based on the primary key.
• For each table, create an index that is based on the foreign key to improve the

performance of joins.
• Create an index for fields that are used frequently for grouping, sorting, or criteria.FIGURE 11-20

Guidelines for Creating Indexes

FIGURE 11-21
Indexes in ERwin

indexes have been designed for the table, and during the implementation phase,
the CASE tool will generate the code that is necessary to construct these indexes
in the DBMS.

Estimating Storage Size

Even if you have denormalized your physical data model, clustered records, and
created indexes appropriately, the system will perform poorly if the database server
cannot handle its volume of data. Therefore, one last way to plan for good per-
formance is to apply volumetrics, which means estimating the amount of data that

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 432

Optimizing Data Storage 433

the hardware will need to support. You can incorporate your estimates into the data-
base server hardware specification to make sure that the database hardware is suf-
ficient for the project’s needs. The size of the database will be determined by the
amount of raw data in the tables and the overhead requirements of the DBMS. To
estimate size, you will need to have a good understanding of the initial size of your
data as well as its expected growth rate over time.

Raw data refers to all the data that are stored within the tables of the database,
and it is calculated via a bottom-up approach. First, write down the estimated aver-
age width for each column (field) in the table and sum the values, yielding a total
record size (Figure 11-22). For example, if a variable-width last name column is
assigned a width of 20 characters, you can enter 13 as the average character width
of the column. In Figure 11-22, the estimated record size is 49.

Next, calculate the overhead for the table as a percentage of each record. Over-
head includes the room needed by the DBMS to support such functions as adminis-
trative actions and indexes, and it should be assigned on the basis of past experience,
recommendations from technology vendors, or parameters that are built into soft-
ware written to calculate volumetrics. For example, your DBMS vendor may rec-
ommend that you allocate 30% of the records’ raw data size for overhead storage
space, creating a total record size of 63.7 characters in the Figure 11-22 example.

Finally, record the number of initial records that will be loaded into the
table, as well as the expected growth per month. This information should have
been collected during the analysis phase as a nonfunctional data requirement. As
shown in Figure 11-22, the initial space required by the first table is 3,185,000
characters, and future sizes can be projected on the basis of the growth figure.
These steps are repeated for every table in order to get a total size for the entire
database.

Many CASE tools will provide you with database size information on the
basis of how you set up the physical data model, and they will calculate volumet-
rics estimates automatically. Figure 11-23 shows a volumetrics screen for ERwin.

Ultimately, the size of the database needs to be shared with the design team
so that the proper technology can be put in place to support the system’s data, and

Order number 8
Date 7
Cust ID 4
Last name 13
First name 9
State 2
Amount 4
Tax rate 2
Record size 49
Overhead 30%
Total record size 63.7

Initial table size 50,000
Initial table volume 3,185,000

Growth rate/month 1000
Table volume @ 3 years 5,478,200

Field Average Size (Characters)

FIGURE 11-22
Calculating Volumetrics

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 433

FIGURE 11-23
Volumetrics Screen in ERwin: (a) Information about Columns and Rows Is Entered into the ERwin; (b) Report Is Generated on the
Basis of the Information.

(a)

(b)

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 434

potential performance problems can be addressed long before they affect the suc-
cess of the system.

Applying the Concepts at Tune Source

Now that the team members had a good idea of the type of data storage formats that
would be used, they were ready to optimize the data for performance efficiency.
Kenji was the analyst in charge of the logical data model, and Jason wanted to be
sure that the data model was optimized for storage efficiency before the team dis-
cussed access speed issues.

Kenji assured Jason that the current data model was in third normal form. He
was confident of this because the project team followed the data modeling guide-
lines that led to a well-formed logical model. Of course, a week or so earlier, he did
apply the three rules of normalization to the data model as a check to make sure that
no design errors were overlooked.

Kenji then asked about the file formats for the transaction file identified in the
earlier meeting. Jason suggested that he normalize the files to better understand the
various tables that would be involved in the import procedure.

The last step of data storage design was to optimize the design for data
access speed. Jason met with the analysts on the data storage design team and
talked about the techniques that were available to speed up access to data in the
system. Together, the team listed all the data that would be supported by the Dig-
ital Music Download system and discussed how all the data would be used. They
developed the strategy laid out in Figure 11-24 to identify the specific techniques
to put in place.

Ultimately, clustering strategies, indexes, and denormalization decisions were
applied to the physical data model, and a volumetrics report was run from the
CASE tool to estimate the initial and projected sizes of the database. The report
suggested that an initial data storage capacity of about 5 gigabytes would be needed
for the expected one-year life of the first version of the system. Additional storage
capacity would be needed as the number of available tunes increases and for future
versions of the system.

Suggestions to Improve
Target Comments Data Access Speed

All tables Basic table manipulation Investigate whether records should
be clustered physically by primary
key.

Create indexes for primary keys.
Create indexes for foreign key fields.

All tables Sorts and grouping Create indexes for fields that are
frequently sorted or grouped.

Tune information Users will need to search Tune
information by title, artist, and
genre.

Create indexes for Tune title, artist,
and genre.

Entire physical model Investigate denormalization
opportunities for all fields that
are not updated very often.

Investigate 1:1 relationships.
Investigate look-up tables.
Investigate 1:M relationships.

FIGURE 11-24
Digital Music Download System
Performance

Optimizing Data Storage 435

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 435

Jason gave the estimates to the analyst in charge of managing the server hard-
ware acquisition so that the person could ensure that the technology could handle
the expected volume of data for the Digital Music Download system. The estimates
would also go to the DBMS vendor during the implementation of the software so
that the DBMS could be configured properly.

SUMMARY

File Data Storage Formats
There are two basic types of data storage formats: files and databases. Files are
electronic lists of data that have been optimized to perform a particular transaction,
and there are five different types: master, look-up, transaction, audit, and history.
Master files typically are kept for long periods because they store important busi-
ness information, such as order information or customer mailing information.
Look-up files contain static values that are used to validate fields in the master files,
and transaction files temporarily hold information that will be used for a master file
update. An audit file records “before” and “after” images of data as they are altered
so that an audit can be performed if the integrity of the data is questioned. Finally,
the history file stores past transactions (e.g., old customers, past orders) that are no
longer needed by the system.

Database Data Storage Formats
A database is a collection of groupings of information that are related to each other
in some way, and a DBMS (database management system) is software that creates
and manipulates these databases. There are four types of databases that are likely to
be encountered during a project: legacy, relational, object, and multidimensional.
The legacy databases (e.g., hierarchical databases and network databases) use older,
sometimes outdated technology and are rarely used to develop new applications.
The relational database is the most popular kind of database for application devel-
opment today, and it is based on collections of tables that are related to each other
through common fields known as foreign keys. Object databases contain data and
processes that are represented by object classes, and relationships between object
classes are shown by encapsulating one object class within another and are mainly
used in multimedia applications (e.g., graphics, video, and sound). One of the
newest members in the database arena is the multidimensional database, which has
become popular with the increase in data warehousing. It stores precalculated quanti-
tative information (e.g., totals, averages) at the intersection of dimensions (e.g., time,
salesperson, product) to support applications that require data to be sliced and diced.

Selecting a Data Storage Format
The application’s data should drive the storage format decision. Relational data-
bases support simple data types very effectively, whereas object databases are best
for complex data. Multidimensional databases are tuned to store aggregated, quan-
titative information. The type of system also should be considered when choosing
among data storage formats. Relational databases have matured to support transac-
tional systems, whereas multidimensional databases have been designed to perform
best in decision support environments. Although less critical to the format selection
decision, the project team needs to consider the kind of technology that exists
within the organization and the kind of technology likely to be used in the future.

436 Chapter 11 Data Storage Design

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 436

Key Terms 437

Physical Entity Relationship Diagrams
One important aspect of design is the movement from logical to physical entity
relationship diagrams. Physical ERDs contain references to how data will be stored
in a file or database table, and metadata are included to describe the data model
components. The model reflects design decisions that will affect the physical imple-
mentation of the system.

The CRUD matrix should be modified to show exactly how data in the phys-
ical data model are created and used in the physical process model. The CRUD
matrix helps ensure balance between the physical process and data models prior to
implementation.

Optimizing Data Storage
There are two primary dimensions in which to optimize a relational database: for
storage efficiency and for speed of access. The most efficient relational database
tables in terms of data storage are those that have no redundant data and very few
null values. Normalization is the process whereby a series of rules are applied to
the logical data model to determine how well optimized it is for storage efficiency.

Once you have optimized your logical data design for storage efficiency, the
data may be spread out across a number of tables. To improve speed, the project
team may decide to denormalize—or add redundancy back into—the design that is
depicted in the physical data model. Denormalization reduces the number of joins
that must be performed in a query, thus speeding up data access. Denormalization
is best in situations in which data are accessed frequently and updated rarely. There
are three modeling situations that are good candidates for denormalization: look-up
tables, entities that share one-to-one (1:1) relationships, and entities that share one-
to-many (1:M) relationships. In all three cases, attributes from one entity are moved
or repeated in another entity to reduce the joins that must occur during data access.

Clustering occurs when similar records are stored close together on the stor-
age medium to speed up data retrieval. In intrafile clustering, similar records in the
table are stored together in some way, such as in sequence. Interfile clustering com-
bines records from more than one table that typically are retrieved together. Indexes
also can be created to improve the access speed of a system. An index is a minitable
that contains values from one or more columns in a table and information about
where the values can be found. Instead of performing a table scan, which is the
most inefficient way to retrieve data from a table, an index points directly to the
records that match the requirements of a query.

Finally, the speed of the system can be improved if the right hardware is pur-
chased to support its data. Analysts can use volumetrics to estimate the current and
future size of data in the database and then share these numbers with the people
who are responsible for buying and configuring the database hardware.

Aggregated
Audit file
Clustering
Data mart
Data warehousing
Database

Database management system
(DBMS)

Decision support system (DSS)
Default value
Denormalization
Encapsulation

End-user DBMS
Enterprise DBMS
Executive information system (EIS)
Expert system (ES)
File
Foreign key

KEY TERMS

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 437

438 Chapter 11 Data Storage Design

Hierarchical database
History file
Hybrid object-oriented DBMS
Index
Instantiation
Interfile cluster
Intrafile cluster
Legacy database
Linked list
Logical entity relationship diagram
Look-up file
Look-up table
Management information system

(MIS)

Master file
Member
Multidimensional database
Network database
Normalization
Object class
Object database
Object-oriented DBMS
Overhead
Physical data model
Physical entity relationship

diagram
Pointer
Primary key

Raw data
Referential integrity
Relational database
Set
Star schema design
Structured Query Language

(SQL)
Subclass
Table scan
Transaction file
Transaction processing system
Valid value
Volumetrics

1. Describe the two steps to data storage design.
2. How are a file and a database different from each

other?
3. What is the difference between an end-user data-

base and an enterprise database? Provide an exam-
ple of each one.

4. Name five types of files, and describe the primary
purpose of each type.

5. Name two types of legacy databases and the main
problems associated with each type.

6. What is the most popular kind of database today?
Provide three examples of products that are based
on this technology.

7. What is referential integrity, and how is it imple-
mented in a relational database?

8. What is the biggest strength of the object database?
Describe two of its weaknesses.

9. How does the multidimensional database store data?
10. What are the two most important factors in deter-

mining the type of data storage format that should
be adopted for a system? Why are these factors so
important?

11. Why should you consider the storage formats that
already exist in an organization when deciding on a
storage format for a new system?

12. What are the differences between the logical and
physical ERDS?

13. Describe the metadata associated with the physical
ERD.

14. Describe the purpose of the primary and foreign keys.
15. Name three ways that null values in a database can

be interpreted. Why is this problematic?
16. What are the two dimensions in which to optimize

a relational database?
17. What is the purpose of normalization?
18. Describe three situations that can be good candi-

dates for denormalization.
19. Describe several techniques that can improve per-

formance of a database.
20. What is the difference between interfile and intrafile

clustering? Why are they used?
21. What is an index, and how can it improve the per-

formance of a system?
22. Describe what should be considered when estimat-

ing the size of a database.
23. Why is it important to understand the initial and pro-

jected size of a database during the design phase?
24. What are the key issues in deciding between using

perfectly normalized databases and denormalized
databases?

QUESTIONS

A. Using the Web or other resources, identify a product
that can be classified as an end-user database and a
product that can be classified as an enterprise data-
base. How are the products described and marketed?

What kinds of applications and users do they sup-
port? In what kinds of situations would an organiza-
tion choose to implement an end-user database over
an enterprise database?

EXERCISES

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 438

Exercises 439

B. Visit a commercial Web site (e.g., CDnow, Amazon.
com). If files were being used to store the data sup-
porting the application, what types of files would be
needed? What data would they contain?

C. Using the Web, review one of the products listed at
the end of this exercise. What are the main features
and functions of the software? In what companies
has the database management system (DBMS) been
implemented, and for what purposes? According to
the information that you found, what are three
strengths and weaknesses of the product?

• Relational DBMS
• Object DBMS
• Multidimensional DBMS

D. You have been given a file that contains fields relat-
ing to CD information. Using the steps of normal-
ization, create a logical data model that represents
this file in third normal form. The fields include the
following:

• Musical group name
• Musicians in group
• Date group was formed
• Group’s agent
• CD title 1
• CD title 2
• CD title 3
• CD 1 length
• CD 2 length
• CD 3 length

The assumptions are as follows:

• Musicians in group contains a list of the members
in the musical group.

• Musical groups can have more than one CD, so
both group name and CD title are needed to
uniquely identify a particular CD.

E. Jim Smith’s dealership sells Fords, Hondas, and
Toyotas. The dealership keeps information about each
car manufacturer with whom it deals so that employ-
ees can get in touch with manufacturers easily. The
dealership staff also keeps information about the
models of cars that the dealership carries from each
manufacturer. They keep such information as list
price, the price the dealership paid to obtain the
model, and the model name and series (e.g., Honda
Civic LX). They also keep information about all
sales that they have made. (For instance, they will
record the buyer’s name, the car he or she bought,

and the amount he or she paid for the car.) So that
staff can contact the buyers in the future, contact
information is also kept (e.g., address, phone num-
ber). Create a logical data model. (You may have
done this already in Chapter 7.) Apply the rules of
normalization to the model to check the model for
processing efficiency.

F. Describe how you would denormalize the model that
you created in question E. Draw the new physical
model on the basis of your suggested changes. How
would performance be affected by your suggestions?

G. Examine the physical data model that you created in
question F. Develop a clustering and indexing strat-
egy for this model. Describe how your strategy will
improve the performance of the database.

H. Investigate the volumetric interface with the computer-
aided software engineering (CASE) tool that you are
using for class. What information do you as an ana-
lyst need to input into the tool? How are size esti-
mates calculated? If your CASE tool does not accept
volumetric information, how can you calculate the
size of the database?

I. Calculate the size of the database that you created in
question F. Provide size estimates for the initial size
of the database as well as for the database in one
year’s time. Assume that the dealership sells 10
models of cars from each manufacturer to approxi-
mately 20,000 customers a year. The system will be
set up initially with one year’s worth of data.

J. How would the following ERD be changed to incor-
porate the design decision listed next?

• The analyst wants to keep track of the user ID of
anyone who changes a grade for a course.

• A data store is added on the physical DFD so that
information regarding the current semester’s
courses can be stored temporarily during the
add/drop period before the courses become a part
of the student’s permanent record.

• The system would like to archive alumni into a
table, once they graduate, so that only active stu-
dents are stored in the student table.

K. Draw a physical process model (just the processes
and data stores) for the following CRUD matrix:

Register Schedule Create Create
Student Student Student Transcript Bill
Student Data Store CRUD R R R
Course Data Store CRUD R
Billing Data Store CRUD CRUD
Grade Data Store CRUD

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 439

440 Chapter 11 Data Storage Design

1. In the new system under development for Holiday
Travel Vehicles, seven tables will be implemented in
the new relational database. These tables are New
Vehicle, Trade-in Vehicle, Sales Invoice, Customer,
Salesperson, Installed Option, and Option. The
expected average record size for these tables and the
initial record count per table are given next.

Average Initial Table
Table Name Record Size Size (records)
New Vehicle 65 characters 10,000
Trade-in Vehicle 48 characters 7,500
Sales Invoice 76 characters 16,000
Customer 61 characters 13,000
Salesperson 34 characters 100
Installed Option 16 characters 25,000
Option 28 characters 500

Perform a volumetrics analysis for the Holiday Travel
Vehicles system. Assume that the DBMS that will be used
to implement the system requires 35% overhead to be fac-
tored into the estimates. Also, assume a growth rate for
the company of 10% per year. The systems development
team wants to ensure that adequate hardware is obtained
for the next three years.

MINICASES

c11DataStorageDesign.qxd 8/29/11 8:00 PM Page 440

