\qquad

LAB \#4: SEVEN-SEGMENT DISPLAY

OBJECTIVE

Build a circuit that converts a list of BCD values into a 7 -bit output that can be used to display the decimal equivalent and on a 7 -segment display decoder. Design a circuit that takes a four-bit input $D_{3} D_{2} D_{1} D_{0}$ from the digital trainer and drives a 7 -segment display decoder. Note that for the letters, some are capitalized and some are not. (The reason is that a capital B, for example, would come out the same as an 8 on a 7 - segment display, so we will display a lower case b instead).

MATERIALS

- Digital prototyping board
- Logic gates available, as required
- \#22 solid-core wire, as required
- Common anode 7 segment display (part no. A-521H) or (part no. HDSP5501)

INTRODUCTION

Often, numbers must be displayed by a computer for the user to see. However, humans are not used to reading the binary numbers that computers work with. Therefore, it is beneficial to output values in decimal. A 7 -segment display is a popular form used to display a digit. This lab will have the student build a circuit that takes in a list of binary numbers in (BCD) and then displays the decimal equivalent on a 7 -segment display. The data sheets attached provide the pinouts for the A-521H and HDSP-5501.

7 segment displays have 7 light emitting diodes (LED's), one for each segment. In order for an LED to give off light, a certain amount of voltage and current must be supplied. A common anode 7 segment display ties all of the + voltage sides of the LED's together (the commons). These commons are tied to 5 volts. In order to turn on a specific segment, you must supply a low voltage (logic 0). These 0's will be supplied from your logic gates.

Note that a logic 0 from your gate (approx. 0 volts) and 5 volts on your anode would create a 5 volt drop over the LED's. This is too much. Tie the outputs of
\qquad
your logic gates to the specific input using a resistor. Some of the voltage will then drop over the resistor, protecting your LED. Current limiting resistor values are typically from $200-470 \Omega$.

D_{3}	D_{2}	D_{1}	D_{0}	Display
0	0	0	0	0
0	0	0	1	1
0	0	1	0	2
0	0	1	1	3
0	1	0	0	4
0	1	0	1	5
0	1	1	0	6
0	1	1	1	7
1	0	0	0	8
1	0	0	1	9
1	0	1	0	A
1	0	1	1	b
1	1	0	0	C
1	1	0	1	d
1	1	1	0	E
1	1	1	1	F

PROCEDURE

1. Create a truth table for your 4-bit inputs and the corresponding outputs necessary to light the proper segments of the display. For example, let the input be represented by $D_{3} D_{2} D_{1} D_{0}$:

D_{3}	D_{2}	D_{1}	D_{0}	a	b	c	d	e	f	g
0	0	0	0	0	0	0	0	0	0	1

Since 0000 is decimal 0 , all the outer LED's should be lit, the middle LED should be off. Unused input combinations should be filled with don't cares.
2. Construct K -maps and derive the simplified Booleans equations.
3. Synthesize the logic diagram with pin designators.
4. Build the logic circuit and wire the outputs to the proper pin on the 7 segment display (remember to use current limiting resistors).
5. Demonstrate your working circuit by displaying your numbers and letters to instructor

Arizpe	4	6	8	A	C
Cantu	4	7	9	b	d
Cedilla	3	2	1	E	F
De Hoyos	3	4	5	A	d
Fernandezdelara	2	7	6	A	F
Flores	1	9	8	b	C
Garcia	1	7	5	b	F
Gonzalez	3	7	8	E	C
Guillen	0	1	2	E	d
Islas	0	6	4	C	F
Lara	8	5	2	A	b
Laurel	6	1	3	d	b
Medina	4	7	1	C	A
Moreno	8	6	2	E	A
Reyes	4	2	0	F	d
Reyna	7	2	5	b	d
Rodriguez E.	7	3	0	A	d
Rodriguez L.	1	2	3	A	C
Villanueva	1	3	4	C	d
Mao	2	3	4	b	d
	3	7	8	A	b
	4	5	6	C	F
	5	8	9	A	d

Page 3 of 4

Name
Date

Page 4 of $\mathbf{4}$

