
CptS370
Program Assignment 5: Network Communication
Due Date: Friday, 26 April 2024

1. Purpose

This assignment focuses on network communication via TCP/IP and sockets. In this assignment
you will implement in Java the DateServer/DateClient pair found in the OS textbook – Figures
3.27 and 3.28, respectively. You will then modify them to run within ThreadOS. Finally, you will
modify the functionality according to specifications detailed below, while adding a primitive
handshake capability akin to that described in 19.3.2.

2. Sockets

Recall that a socket is defined as an endpoint for communication. A pair of processes
communicating over a network employs a pair of sockets—one for each process. Remember
also that a socket is simply an IP address concatenated with a port number. In general, sockets
use a client–server architecture. The server waits for incoming client requests by listening to a
specified port. Once a request is received, the server accepts a connection from the client
socket to complete the connection. We will explore this capability through making
modifications in the basic functionality delivered in the text’s DateServer and DateClient
source files.

3. Statement of Work

Part 1: Implement DateServer (Textbook Figure 3.27) and DateClient.java (Textbook Figure 3.28) on
ThreadOS

As usual, create a working directory in ~/src/java/prog5 and soft link to the Java class files in
/opt/java/libs/cleanTOS/.

Convert DateServer.java (Appendixe A: Figure 3.27 Date server) and DateClient.java
(Appendixe A: Figure 3.28 Date client) to run within ThreadOS (consult your code for Prog2).
Note that in lieu of using the host string “127.0.0.1”, you can use the string “localhost” if you
find that more readable. In addition to adapting the code to run in ThreadOS, you will also
need to modify DateServer.java so that it connects to a random port (ServerSocket(0)) rather
than a static port and prints out the port where it is listening. This will prevent interference
with other students’ testing. Along that same line, you will need to modify DateClient.java so

that it accepts a parameter to specify the port to which to connect, which should be specified
at runtime to match the port DateServer printed out.

Test that your conversion works by:

javac *.java # only DateServer.java and DateClient.java should be present

java Boot

l Shell

DateServer &

DateClient <port number from DateServer output>

exit

q

Note that your code should allow you to “exit” cleanly from the Shell and to “q” out of
ThreadOS. You may note a delay with the command prompt between “DateServer &” and
“DateClient”, but this is merely because DateServer is asked to run in the background, so
output may get intermixed. Hitting <Enter> will get you a clean prompt.

Part 2: Create CmdServer.java and CmdClient.java

You will now be expected to create your own server and client, based on the previous code.
Note: you are expected to make generous use of online Java coding resources to explore the
most effective ways to accomplish necessary changes to the original client/server code.

To start:

cp DateServer.java CmdServer.java # use DateServer as basis for CmdServer

cp DateClient.java CmdClient.java # use DateClient as basis for CmdClient

Next, edit CmdServer.java and CmdClient.java to accomplish the following functionality. Test
incrementally to make the overall task more achievable.

1. Change the port for initiating communication between the server and the client.
a. For CmdServer, have the server loop through ports in the range 5000 – 5500,

inclusive. Once it successfully listens on a port, have it print out a message
detailing its hostname and listening port. It will look something like this:

$ java Boot

threadOS ver 1.0:

Type ? for help

threadOS: a new thread (thread=Thread[Thread-3,2,main] tid=0 pid=-1)

-->l Shell

l Shell

threadOS: a new thread (thread=Thread[Thread-5,2,main] tid=1 pid=0)

shell[1]% CmdServer &

CmdServer

threadOS: a new thread (thread=Thread[Thread-7,2,main] tid=2 pid=1)

shell[2]% sigint.eecs.wsu.edu is listening on port 5000

b. Modify CmdClient.java to test the port number specified as a parameter to ensure
it is in the range 5000 – 5500, inclusive.

c. Modify CmdClient.java to allow a second, optional parameter where a hostname
is specified. If no hostname parameter is provided, default to “localhost”,
otherwise set hostname equal to passed parameter before trying connection to
server.

d. As before, you can test local access by:

java Boot

l Shell

CmdServer &

CmdClient <port number from server> // Should connect to localhost

For testing remote access, you can log on to one Sig server and run:

java Boot

l Shell

CmdServer &

Then next log on to a different Sig server and run:

java Boot

l Shell

CmdClient <port number from server> <hostname from server>

2. Modify client to transmit a message entered by the user. Modify server to accept the
message, reverse the text, and send it back to the client. Client should print the reversed
text once received.

3. Establish a “handshake” for primitive authentication.
a. After connection, the first thing the client is to transmit is the username of the

client’s owner (obtained from the OS using Java).
b. The server should check its first received message against its own username

(obtained from the OS using Java) to ensure they match. If they do not match, the
server should disconnect and exit. Client should check for a response (which
should be the new random port—see c. below), but if receiving a “null”, client
should exit.

c. You may test the username handshake by (temporarily) having the client send an
incorrect username to verify the server detects this, and that the disconnects and
exits are accomplished appropriately.

d. Server then should open a new random port (ServerSocket(0)) and transmit this
new port to the client.

e. Client should then connect to the new port received from the server and be ready
for user input.

4. Modify client to disconnect and exit if the message entered by the user is “bye” or “die”.
Also modify the server to close the connection and accept new connections (with
handshaking) after receiving a “bye” message, and to gracefully exit entirely after
receiving a “die” message. No need to reverse and transmit these messages.

5. Modify server to check the message received, and if it is one of the following
commands, instead execute the command locally and then transmit the results to the
client. Note that the commands should be able to run with parameters, but do not
worry about properly parsing and executing wildcards. Further, note that all previous
functionality should continue to function after executing the command.

a. "whoami"
b. "ls"
c. "pwd"
d. "ps"
e. "man"
f. "echo"
g. "date"

4. What to Turn In On Canvas

Softcopy (file uploads according to your Canvas Assignment):

1. Part 1:
o DateServer.java and DateClient.java

2. Part 2:
o CmdServer.java and CmdClient.java
o Sample output.txt file containing results of executing the following

commands:
▪ On one Sig server:

• java Boot

• l Shell

• CmdServer &

▪ On another Sig server:

• java Boot

• l Shell

• CmdClient <port number> > <hostname from server>

• Hello

• whoami

• date

• bye

• CmdClient <port number> > <hostname from server>

• Hello again

• echo Hello again

• ls

• ls -l

• ps ux

• man pkill

• die

• exit

• q

5. FAQ

Please read the FAQ document posted on Canvas.

6. Appendix

A. Figure 3.27 Date server

import java.net.*;
import java.io.*;

public class DateServer
{
 public static void main(String[] args) {
 try {
 ServerSocket sock = new ServerSocket(6013);

 /* now listen for connections */
 while (true) {
 Socket client = sock.accept();

 PrintWriter pout = new
 PrintWriter(client.getOutputStream(), true);

 /* write the Date to the socket */
 pout.println(new java.util.Date().toString());

 /* close the socket and resume */
 /* listening for connections */
 client.close();
 }
 }
 catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
}

B. Figure 3.28 Date client

import java.net.*;
import java.io.*;

public class DateClient
{
 public static void main(String[] args) {
 try {
 /* make connection to server socket */
 Socket sock = new Socket(“127.0.0.1”,6013);

 InputStream in = sock.getInputStream();
 BufferedReader bin = new
 BufferedReader(new InputStreamReader(in));

 /* read the date from the socket */
 String line;
 while ((line = bin.readLine()) != null)
 System.out.println(line);

 /* close the socket connection*/
 sock.close();
 }
 catch (IOException ioe) {
 System.err.println(ioe);
 }
 }
}

	1. Purpose
	2. Sockets
	3. Statement of Work
	Part 1: Implement DateServer (Textbook Figure 3.27) and DateClient.java (Textbook Figure 3.28) on ThreadOS
	Part 2: Create CmdServer.java and CmdClient.java

	4. What to Turn In On Canvas
	5. FAQ
	6. Appendix
	A. Figure 3.27 Date server
	B. Figure 3.28 Date client

