
Assignment 5

B351 / Q351

Comprehension Questions Due:
Tuesday, Oct 20th, 2020 @ 11:59PM

Programming Initial Due:
Tuesday, Oct 27th, 2020 @ 11:59PM

1 Summary

• Gain a basic understanding of machine learning

• Implement entropy, information gain, and classification methods for a decision
tree algorithm, in addition to seeing how to recursively build a decision
tree from an input node.

We will be using Python 3, so be sure you arent using older versions. Code
that will compile in Python 2.7 may not compile in Python 3. See our
installation guide for help removing old versions and installing Python 3.

Please submit your completed files to your private Github repository for this
class. You may not make further revisions to your files beyond the above
deadline without incurring a late penalty.

This assignment must be completed individually. You must submit your own
files to your own repository. Any shared code will not be tolerated and those
involved will be subjected to the university’s cheating and plagiarism policy. If
you discuss ideas, each person must write a comment at the top of
the assignment file naming the students with whom ideas were
shared.

2 Background

Decision Tree Learning is a machine learning algorithm often used for
classification and regression problems. Decision trees offer several advantages
over other algorithms, such as ease of implementation and reasonable
interpretability, while facing several drawbacks, such as a tendency towards
overfitting. Our reasoning behind choosing decision trees as the subject for
this assignment is that they require minimal mathematical background as
compared to other machine learning methods (Linear Regression, Neural
Networks, etc). In this assignment, we hope to provide you with some general
background knowledge regarding machine learning, as well as give you a
chance to work with a real, commonly used machine learning algorithm.

1



In order to discuss decision trees, it will help to have a common background on
machine learning terminology. The following videos provide some background
on machine learning, and we highly recommend you watch them. (Having this
baseline of machine learning knowledge is a prerequisite for a good machine
learning-related final project!)

1. Machine Learning Basics: What is Machine Learning? (7:51)

2. Introduction to Supervised Learning (12:29)

Decision trees can be used for both classification and regression problems, but
for this assignment, we will be limiting our scope to classification. Even
further, we limit the type of data which our algorithm can receive to
categorical data.

How does a decision tree work? There are two main phases:

1. Learning the tree

2. Classifying data

2.1 Learning the Tree

Learning the tree is a recursive process. We start with a root node, which
contains all the data points. We will use some criterion to decide which
attribute to use to split the data into 2 subnodes. Repeat this process at each
of the subnodes, using the data they receive from their parent node. The
process continues until a node that has all the data of the same class is
reached, or has identical attributes. Your job is to implement the criterion
that decides what to split. For implementation details of the full algorithm
itself to learn the tree, refer to the train function at the bottom of a5.py.

In the textbook, there are detailed explanations on how to build a decision tree.
For further information, please refer to section 8.4 (page 184) in the book (you
can find the book in syllabus).

2.2 Classifying Data

Once the decision tree is built, classifying new datapoints is trivial. Simply
propagate that datapoint through the tree, and when you arrive at a leaf node,
return the class of the most common data in that node.

3 Programming Component

In this assignment’s programming component, instead of building a whole
decision tree, you will just be implementing specific functions that are used in
the creation of a decision tree.

2

https://youtu.be/ukzFI9rgwfU
https://youtu.be/bQI5uDxrFfA


3.1 Data Structures

You will utilize the following classes. You should read and understand this
section before embarking on the assignment.

3.1.1 a5.py

To help with your implementations, we imported the math package so you can
easily access mathematical functions. We also provide a useful function called
unique, based on numpy’s unique function, which takes an iterable and returns

• a list of the unique items from that iterable

• a corresponding list of the counts of the number of times each item
appeared in the original iterable

Example: unique([5,3,5,2,3,4,2,5,4,2]) would return ([2,3,4,5] , [3,2,2,3])

You will also see the functions for entropy and information gain. It is your
job to implement these, and their criteria is explained under the Objectives
section of this documentation.

3.1.2 OtherKey Class

This class is in the a5.py file. An OtherKey object is a special key that
represents any unexpected value for an attribute in question. This will be
useful in the classify method.

3.1.3 Node Class

This class is in the a5.py file. Node is a node in a decision tree. It keeps track of
the attribute split for its children. It encapsulates the following data members:

• attribute - the attribute used to split at the Node. It is also a key used
in a data point’s dictionary.

• children - a dictionary mapping possible values of the above attribute to
child nodes for recursive classification

• classification - the selected class for a leaf node. This will be None for
non-leaf nodes.

The following are Node’s provided object methods:

1. init (self, attribute=None, children={},
classification=None) - constructor for the Node class

2. repr (self) - provides a string-based representation of the tree under
any Node, suitable both for a human to read and for a machine to use to
reconstruct the tree.

3



3. classify point(self, point) - classifies a given point. It is your job to
implement this, and its criteria is explained under the Objectives section.

4. train(self, points, labels) - trains the decision tree. You won’t need
to do anything with this, but it will give you an idea on how the functions
you’ll be implementing will come together to create a decision tree.

3.1.4 KNN Classifier Class

This class is in the a5.py file. This class contains all the needed methods
for classification using the KNN algorithm. It encapsulates the following data
members:

• k - the ’K’ in K-NN. used to determine the number of neighbors to use.

The following are KNN Classifier’s provided object methods:

1. init (self, k) - constructor for the KNN Classifier class

2. calc euclidean distance(self, point a, point b) - calculates the
euclidean distance of two points. It is your job to implement this, and its
criteria is explained under the Objectives section.

3. get top label(self, top k labels) - picks the most frequent label in
a list of labels, generally the closest k labels. It is your job to implement
this, and its criteria is explained under the Objectives section.

4. classify point(self, point, training points, training labels)

- classifies a given point using the training points and labels given. It is
your job to implement this, and its criteria is explained under the
Objectives section.

3.1.5 debug.py

This file aims to help you see whether or not your functions are correct and get
the intended entropy, information gain, and classification values when they’re
run on the given examples. Further debugging is encouraged to be done on your
own, but the grading tool will also provide some feedback as to what you might
be missing. Simply run the main function at the bottom of the file to check
your results compared to the intended answers.

3.2 Objective

As stated before, the actual creation of the decision tree has been implemented
for you already. Your goal is to provide the implementations to the following
functions:

1. calc entropy

2. calc information gain

4



3. Node.classify point

4. KNN Classifier.calc euclidean distance

5. KNN Classifier.get top label

6. KNN Classifier.classify point

to the following specifications:

3.2.1 calc entropy(classifications)

Entropy is a concept from information theory, which in vague terms, describes
the amount of information missing from a system. This function should use
the information contained in the given classifications to determine the entropy
value for a dataset in a decision tree. It should utilize the entropy formula (as
seen in lecture), which involves the probability of each class occurring.

• classifications: a list of the classifications that are assigned to the
points of a dataset

3.2.2 calc information gain(parent classifications,
classifications by val, val freqs)

Information Gain is a metric for choosing decision tree splits, returning a value
based on the difference between the entropy of the parent and the normalized
entropy of all the children.

• parent classifications: a list of the classifications for the points of the
parent node

• classifications by val: a dictionary of each unique value of an
attribute mapped to a list of the classifications of each data point with
that unique value.
Example: From the sunburn example in class, classifications by val

for the attribute ”Hair” would be {’Blonde’:[’Burn’, ’None’, ’Burn’,
’None’], ’Brown’:[’None’, ’None’, ’None’], ’Red’: [’Burn’]}

• val freqs: a dictionary of each unique value of an attribute mapped to
the number of times that value occurs

It may be helpful to refresh on Python dictionary methods when implementing
this function.

3.2.3 Node.classify point(self, point)

Write a function that classifies a given point going through the decision tree
process. It should:

5

https://en.wikipedia.org/wiki/Entropy#Information_theory
https://en.wikipedia.org/wiki/Decision_tree_learning#Metrics


1. If the node has a classification, return that classification

Otherwise:

1. Get the value of the node’s attribute at the point

2. If this value maps to one of the node’s child nodes, get the child node
corresponding to the value

3. Otherwise, get the child node corresponding to OTHER

4. Recursively call classify on the child node using the provided point
argument

• point: a dictionary of each attribute for the point mapped to the
attribute’s value at that point
Example: From the sunburn example, if we chose ”Annie” as our point,
it would look like {’Hair’:’Blonde’, ’Height’:’Short’, ’Weight’:’Average’,
’Lotion’:’No’}

3.2.4 KNN Classifier.calc euclidean distance(self, point1, point2)

Write a function that calculates the euclidean distance between two given
points.

• point a & point b: a 2-tuple of floats representing a point in the
classifiers data set. Example: (x, y) where x,y are floats.

3.2.5 KNN Classifier.get top label(self, top k labels)

Write a function that chooses the most frequent label from a list of labels.

• top k labels: a list of labels in the classifiers data set. When calling
pick label, this needs to be the closest k labels to the point you’re trying
to classify.

3.2.6 KNN Classifier.classify point(self, point, training points,
training labels)

Write a function that classifies a given point in the given data set going
through the K-nearest neighbors algorithm. It should:

1. Order the given sample points by distance, calling the
calc euclidean distance function to find the distance from the sample
point to the new point, point.

2. Find the k-nearest neighbors using the above ordering

6



3. Call get top label on the list of labels for the k-nearest neighbors in
order to determine the most frequent occurring label.

4. Return the result of pick label exactly.

• point: the point we are wanting to classify

• training points: sample points from a data set. this is a list of 2-tuples
representing (x, y) points.

• training labels: labels of the training points. will be the same length n

as training points. for each i from 0 to n, training labels[i] is the
label of training points[i]

4 Grading

Problems are weighted according to the percentage assigned in the problem
title. For each problem, points will be given based on the criteria met in the
corresponding table on the next page and whether your solutions pass the test
cases on the online grader.

In addition, the students in the tool-assisted group will have their solutions
assessed for clarity (15 points), control flow and time complexity (5 points),
and making use of clean and suitable syntax features (5 points).

Finally, remember that this is an individual assignment.

4.1 calc entropy (20%)

Criteria Points
Counts how many times each class in classifications occurs 5
Gets the total number of classifications 2
Goes through each count and gets the probability distribution 5
Returns the entropy using the entropy formula used in lecture,
utilizing the probability distributions found

8

Total 20

7



4.2 clac information gain (20%)

Criteria Points
Gets the total number of data points 2.5
Gets the weighted entropy by going through each value and their
classifications
(a) gets the entropy at that value (the child entropy) 5
(b) finds the probability of that value occurring 5
Gets the entropy of the parent 2.5
Returns the information gain using the information gain formula
used in lecture

5

Total 20

4.3 classify point (10%)

Criteria Points
If the node has a classification, returns that classification 2
Otherwise,
Gets the value of the node’s attribute at the point 2
If this value maps to one of the node’s child nodes, get the child
node corresponding to the value

2

Otherwise, get the child node corresponding to OTHER 2
Recursively calls classify on the child node using the provided
point argument.

2

Total 10

4.4 KNN Classifier (40%)

4.4.1 calc euclidean distance (10%)

Criteria Points
Returns the euclidean distance between the two given points 10
Total 10

4.4.2 get top label (10%)

Criteria Points
Returns one of the most frequent labels 8
Always returns the same value given the same top k labels list 2
Total 10

8



4.4.3 classify point (20%)

Criteria Points
Calls calc euclidean distance on each sample point with the
classification point

5

Calls get top label on closest k labels 10
Returns the label determined by get top label 5
Total 20

5 Bonus (10%)

So far, we have worked with discrete variables as the only attributes for our
decision tree. This is data that can only take a particular value, and has no
grey area between it’s choices. However, another type of data commonly seen
in machine learning / AI practices is called continuous data, or data that can
occupy any value over a continuous range. A good example of this would be
age, as a person can have an age anywhere between 1 and around 125. Decision
trees deal with continuous variables by choosing a pivot number (for our age
example, a good pivot would be 50) and splits the data on whether or not the
attribute is above or below the pivot value.

5.1 Splitting

Since continuous variables are able to be almost any value, picking a good pivot
value is important in order to make the best splits. Let’s say we are trying to find
the best split for age. We have 4 nodes, with ages [15, 30, 45, and 60]. To find
the best pivot, we would first find the midpoints between each adjacent value in
our data (in this case, our midpoints would be [22.5, 37.7, and 52.5]). One we
have found the midpoints, we then evaluate each split using information gain,
and whichever split gives best information gain on the training data is used.

5.2 Submitting

Currently, our program does not support the use of continuous variables. For
this bonus assignment, you are tasked in making a new file called a5 Bonus.py

that uses a5.py as a base but is able to work with continuous variables.
Comments should be added to the file to indicate where changes were made in
the base file, and the finished program should be pushed to your respective
Github account. Email Aaron(aaleslie@iu.edu) to submit.

9


	Summary
	Background
	Learning the Tree
	Classifying Data

	Programming Component
	Data Structures
	a5.py
	OtherKey Class
	Node Class
	KNN_Classifier Class
	debug.py

	Objective
	calc_entropy(classifications)
	calc_information_gain(parent_classifications, classifications_by_val, val_freqs)
	Node.classify_point(self, point)
	KNN_Classifier.calc_euclidean_distance(self, point1, point2)
	KNN_Classifier.get_top_label(self, top_k_labels)
	KNN_Classifier.classify_point(self, point, training_points, training_labels)


	Grading
	calc_entropy (20%)
	clac_information_gain (20%)
	classify_point (10%)
	KNN_Classifier (40%)
	calc_euclidean_distance (10%)
	get_top_label (10%)
	classify_point (20%)


	Bonus (10%)
	Splitting
	Submitting


