1. #2.4.1 Just do the last two sentences (the cubic interpolating polynomial p3 and its integration to get formula (2.4.9)).
[image: ]
2.4.3
 [image: ]
2.4.4  , 2.4.5 ,2.4.6, 2.4.7 and 2.4.9
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2.4.13[image: ]


2. #2.4.2 When applying your program to 2.2.2, just use the step size h = 0.125, and also compute the absolute errors (and compare these to those using Euler and Heun). And instead of the IVP in 2.2.8, repeat this on the IVP y ′ = 2xy2 with y(0) = 1 on the interval [0, 1].
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Method ( 2.4.5)
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Exercise 2.2.2 and 2.2.8
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3. #2.4.5, for the method listed in the problem (which is ABM2), but not for (2.4.13). Just use the step size h = 0.125, and compare the absolute errors to AB2, Euler, and Heun. Repeat for the IVP y ′ = 2xy2 with y(0) = 1 on the interval [0, 1] and compare with prior results.
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Exercise 2.4.2
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2.4.13 
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2.4.2. Write a computer program to carry out the second-order Adams-Bashfory,
method (2.4.5). Use the second-order Runge-Kutta method to supply tp,
missing starting value y1. Apply your program to the problems of Exercige
2.9.9 and 2.2.8 and compare your results with the Euler and Heun methods,
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EXERCISES 2.2

2.1. Rewrite the predator-prey equations (2.1.3) in the form (2.2.1); tha
28 the functions fi1 and fa. Do the same for the trajectory equations (2.

(2.1.17), and (2.1.18).

2.2.2. Apply Euler’s method (2.2.5) to the initial-value problem ' = —y,0 < z £ 1
" (0) = 1, with h = 0.25. Compare your answers to the exact solution y(z) =
¢~%. Repeat for h/2 and h/4.

2.2.3. Verify the calculations of Tables 2.1 and 2.2.

2.2.4. Apply the Heun method to the problem of Exercise 2.2.2. Compare your
results with Euler’s method.

2.2.5. Give the function ¢ of (2.2.21) for the fourth-order Runge-Kutta method
(2.2.20).

2.2.6. The method yr+1 = yr + hf(zx + (h/2), yk + (h/2)f(zk,yx)) is known as the
“ midpoint rule. Show that it is second-order accurate.

2.2.7. Write the fourth-order Runge-Kutta method (2.2.20) in vector form for the
system (2.2.30).

2.2.8. Apply Euler’s method and the Heun method to the problem ="z +
[()]?,y(0) = 1, z > 0, and compute y; for h = 0.1.

2.2.9. For the fourth-order Runge-Kutta method (2.2.20), draw the figure corre-
sponding to Figure 2.4.

2.2.10. Repeat the calculations of Figure 2.7 using Euler’s method with step sizes
0.5 and 0.25. How small a step size do you have to use for the graph of the
solution to close back on itself to visual accuracy?

2'2_;11- Test the stability of the solution of the predator-prey equations (2.2.34)
with respect to changes in the initial conditions by changing zo = 80, yo = 30
by a unit amount in each direction (four different cases) and repeating the
calculation using the second-order Runge-Kutta method.

2‘3;.1-2- Suppose that the initial condition of (2.2.5) is in error. Modify the analysis
of the discretization error in Euler’s method to obtain a bound on the error
caused by using an inexact initial condition Yo=F#1.
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2.4.5. Use as much as possible of your program of Exercise 2.4.2 to write a computer
program to carry out the predictor-corrector method

h
L= n+t 5(3fk & i),
b= iflernuE),

h
Yk+1 Yk + E(f,ﬁ';’l + fx).

Apply this to the problem y' = —y, y(0) = 1 and compare your results with
the methods of Exercise 2.4.2. Similarly, write a program to carry out (2.4.13).
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4 Multistep Methods

We return now to the initial-value problem

U= i@y, a<z, ya)=yp. (2.4.1)

the methods of Section 2.2, the value of Yx+1 depended only on informa-
n at the previous point, ;. It seems plausible that more accuracy might
gained if information at several previous points, zg,zx—1,..., were used.
iltistep methods do just that.

A large and important class of multistep methods arises from the following
proach. If we integrate (2.4.1) for the exact solution y(z) over the interval
:1$k+1]’ we have

Y(@he1) — y(zx) = /m‘y'(z)dz: /““ﬂz,y(z))dz (242)

Tk

Th+1
/ p(z)dz,
Tk

ere in the last term we assume that p(z) is a polynomial that approxi-
tes f(z,y(z)). To obtain this polynomial, suppose that, as in Section 212,
Uk=1,..., Yk are approximations to the solution at zy,zx—,...,z4_y,
ere we assume that the z; are equally spaced with spacing 4. Then fi =
iy Yi), i = k,k—1,...,k—N, are approximations to f(z, U(z))atzy, zp_1,. ..
'k-N, and we take p to be the interpolating polynomial for the data set
b Ji)y 4 = k,k—1,...,k — N. Thus p is the polynomial of degree N that
isfies p(z;) = fi, i=k,k—1,...,k—N. In principle, we can integrate this
lynomial explicitly to give the method

-

Tk+1

Yk+1 = Yk + / p(z)dz. (2.4.3)

k

dams-Bashforth Methods

As the simplest example, if N = 0, then p is the constant f; and (2.4.3) is
N N — 1 then v is the lilear function that internalatec
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(z — zk)
p(@) = p1(@) = fo = —5—Afk, o,
s
where the minus sign occurs since h = |zg—1 — z|. If we integrate (2,4.4) &
T 10 Tk4+1, We obtain the method o
Wit h
Y+t = Yk + hfi — SASk = ye + 5Bk = fr), (245

which is a two-step method since it uses information at the two points Ty ang
Zp—1. Note that the first form of (2.4.5) shows how Euler’s method is modifigg
to obtain the new method.

Similarly, if N = 2, then p is the interpolating quadratic polynomial

(Tk—2, fx—2), (Tk—1, fx—1), and (zk, fx). If we again use (2.3.13), this polyn,
mial may be written as

(x — zx)(z —
2h?

where A%fi = fi — 2fx—1 + fr—2. Thus, by (2.4.3), the method is

p2(z) = pa(z) +

Be=1) a2, (2.46)

h 5
Yr+1 = Yk + hfx — EA‘f’“ + ghAsz. (247)

This exhibits how the two-step formula (2.4.5) has been modified. We can also
collect terms in (2.4.7) and write it as

h
Ykt1 = Yk + 75(23fk — 16fk-1 + 5fi—2). (248

If N = 3, the interpolating polynomial is a cubic, and the method is

h
Ukt1 = Uk + 57 (55fk — 59fk-1 + 3Tfi—z — 9fi—3)- (2.49)

Note that (2.4.8) is a three-step method, whereas (2.4.9) is a four-step method-
It is left to Exercise 2.4.1 to give a detailed verification of the formulas (2.4.5)
(2.4.8), and (2.4.9).

The formulas (2.4.5), (2.4.8), and (2.4.9) are known as Adams-Bashforth
methods. As we shall see later, (2.4.5) is second-order accurate and henc
is known as the second-order Adams-Bashforth method. Similarly, (2~4-8)
and (2.4.9) are the third- and fourth-order Adams-Bashforth methods, respe®
tively. We can, in principle, continue the preceding process to obtain Adan_ls'
Bashforth methods of arbitrarily high order by increasing the number of priof
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h
Ykt = Yk + 51 @k, gh1) + fi], (2419

for the unknown value yx41, and similarly for (2.4.11). Thus the Adan
Moulton methods are called implicit, whereas the Adams-Bashforth method,
are called ezplicit since no equation needs to be solved in order to obtaiy Wi

Predictor-Corrector Methods

Implicit methods are useful for so-called stiff equations, to be discussed
in the next section. However, another use of implicit methods is to combine
an explicit with an implicit formula to form a predictor-corrector method. A
commonly used predictor-corrector method is the combination of the fourth.
order Adams methods (2.4.9) and (2.4.11):

h
y;(fle = ¥+ ﬁ(55fk. = 59fk—1 + 37fx—2 — 9fr—3),
e = fEea,)), (2413

h
Yk+1 = Yk + 52(9f;§i)1 +19fk — 5 fk—1 + fr—2),.

Note that this method is entirely explicit. First a “predicted” value y,(f:l of

Yk+1 is computed by the Adams-Bashforth formula, then y,(cﬂf 1 is used to give an
approximate value of fi.1, which is used in the Adams-Moulton formula. The
Adams-Moulton formula “corrects” the approximation given by the Adams
Bashforth formula. We could also take additional corrector steps in (2.4.13).
In fact, repeated use of the corrector formula gives an iterative method to solve
the nonlinear equation (2.4.11). We will return to this topic in Chapter 5.

Discretization Error

We turn now to the question of the discretization error and, for simpliIC‘1
ity, we will consider in detail only the Adams-Bashforth method (2.4.5). I

a manner analogous to (2.2.23) for one-step methods, we define the local disr
cretization error at z by

AL(z,h) = y(a+ ) ~ y(@) - 313/(@,u(z)) ~ f(z — hy(e— W)}, (41




