
2

/100

 CDA3201 Intro to Logic Design Lab Assignment

Name: Grade:

Dr. Petrie Lab 2, p. 1

Note: Each variable is one digit, the answer takes up 2 variables Cout and Sum. If you have more than 1 column of numbers, addition

is done from right to left. For the right most (least significant) column you only add 2 numbers, but for the rest of the columns you

add the 2 numbers shown in the column plus the carry from the column to its right. So to build an arithmetic unit that adds we will

need two types of components, one that adds 2 binary numbers, and one that adds 3:

 Half Adder is used to add the least significant (right-most) column. It has 2 inputs: A,

and B; and 2 outputs (one for each digit in the answer). The least significant digit of the

answer is called Sum (written below the column), and the most significant digit of the

answer is called “carry” (Cout, written above the next column on left).

 Full Adder to add each column other than the least significant column. It has 3 inputs:

the 2 numbers in the column: A, B, plus the carry Cout from the column to its right, now

called Cin. There are 2 outputs (one for each digit of the answer), the least significant

digit is the Sum, while the most significant is the carry out to the next column to its

left, which we call Cout.

2.a.1 [5 Petrie] Complete the Truth Table on the right for a Half Adder to add two

binary digits (bits), A and B, to get a two bit answer, the Sum is the least significant

bit, Cout is the most significant bit or “carry”. Write the Minterm # and the product
associated with each row, then add A and B in decimal and binary.

2.a.2 [5 Petrie] Write the Boolean expression as a Sum of Minterms and a

Canonical Sum of Products, fα (A, B):

Sum = f (A, B) = ∑ m (_______________), Sumα = fα (A, B) = _____________________

Cout = f (A, B) = ∑ m (_______________), Coutα = fα (A, B) = _____________________

2.a.3 [5 Petrie] Number each cell (in upper right corner) of

the Karnaugh Map (K-Map), enter the corresponding

value of the output from the Truth Table, and group to

show simplification.

2.a.4 [5 Petrie] From the KMaps find Simplest Sum of

Products. Copy the answer on top of next page

Sum = ________________ Cout = ________________

2) [100 Petrie] BINARY ARITHMETIC – 1 bit Half Adder, 1 bit Full Adder, 4 bit Adder, 5 bit Adder

Arithmetic Operations include ADDITION (+) and MULTIPLICATION (●). Boolean Operations include OR (+) and AND

(●). Although the symbols are the same, the operations and results are different. In Lab 1 the circuits performed Boolean Operations.

In this lab the circuits will perform the Arithmetic Operation of Addition of Binary Numbers.

 Add the decimal numbers (base 10) Add the binary numbers (base 2) Decimal Binary

 Below by hand and show carry: below by hand and show carry: 0 0
 Cout Ex: 1 1 1 1 1
 A 2 5 9 8 7 1 2 5 9 8 1 0 1 0 0 1 1 1 1 0 1 1 0 1 2 10
 + B + 3 + 6 + 7 + 4 + 2 9 + 3 6 7 4 + 0 1 1 + 0 + 1 + 0 + 1 + 0 1 1 + 0 1 1 1 3 11
Cout Sum 1 0 0 0 4 100

2

/100

 CDA3201 Intro to Logic Design Lab Assignment

Name: Grade:

Dr. Petrie Lab 2, p. 2

2.a.4 Sum = _______________ Cout = ____________

2.a.5) [10 Petrie] Design a circuit for the optimized Cout and

Sum as a 2-input (A, B) 2-output (Cout1, Sum1) NOT-

AND-OR network. Use the shaded gates on the right to

help you trace the gates you need. Label all the outputs of

the AND gates.

2.a.6) [5 Petrie] Create a project in Quartus named

Lab2HalfAdder_Petrie_YourName. Verify that the

NOT AND OR Circuits for Sum1 and Cout1 works by

drawing the schematic in a .bdf, compiling and simulating

it. Verify that the .vwf output matches truth table in 2.a.1.

Capture the schematic for your portfolio file.

2.a.7) [5 Petrie] Review the NAND equivalent () substitutions for the NOT, AND, OR, negated OR, and

circuits below. Draw missing NANDs, converting to all-NANDs

2.a.8) [5 Petrie] Design the following NAND substitutions. Check Boolean Expression reduce equivalently

You only have 3-input NAND gates and you

need a 2-input NAND gate, what do you

connect to 3rd input to gives the same result

as the 2-input NAND?

You need a 3-input NAND gate and you only

have 2-input NAND gates, design a solution

You need a 4 input NAND but only have 2-input

NANDs, design a solution

You need a 4 input NAND but only have 3-input

NANDs, design a solution

A
B
C
D A

B

A
B

A
B
C

A
B

C

A
B

C
D

A
B
C
D

A
B
C

D

2

/20

 CDA3201 Intro to Logic Design Lab Assignment

Name: Grade:

Dr. Petrie Lab 2, p. 3

2.a.9) [5 Petrie] Convert the simplified NOT-AND-OR circuit

in 2.a.5 to an all-NAND gates. Make sure to remove

these pair of extra NANDs to make the Simplest all

NAND circuit. Label outputs Cout2, Sum2 Note: when

you do the substitution that sometimes you end up with two “NOTs” in a row

along the same wire. This “NOT” pair can be removed because they cancel:

(A’)’ = A. You may want to draw it on scratch paper before transferring your

design to the diagram on the right

2.a.10) [5 Petrie] Open the 2.a.6 Quartus project. Add to

the .bdf file the schematics of the Cout2 and Sum2

of all-NAND circuits. Compile, simulate, and

verify 2.a.5 and 2.a.7 circuits are equivalent.

Capture the all-NAND schematic and .vwf results

for portfolio.

2.a.11) [10 Petrie] Once verified equivalent, plan your wiring below of both circuits but DO NOT WIRE

on the breadboard. Label all inputs and outputs of the gates used. Note: wires from gray/green tube in kit contains four twisted-

pairs of wires: BROWN and Brown/White, ORANGE and Orange/White, GREEN and Green/White, BLUE and Blue/White. These

can be used for up to 4 inputs that can be noted. Note: you have other colors that have no corresponding white striped wire: WHITE,

GREY, PURPLE, YELLOW, besides these: RED used for Vcc (Power), and BLACK used for Ground (avoid using these in your

circuit except for these uses). Use a different colored solid wire for each input, and corresponding color/White for corresponding NOT

(use dashed lines and color below to plan the use of wires).

Suggested

color code

Inputs:

 BLUE
 GREEN
 BROWN
 ORANGE

In-Between:

 WHITE

 YELLOW

Outputs:

 GREY

 PURPLE

Vcc and GND:

 RED

 BLACK

 Cout Sum

 Cout2 Sum2

2

/100

 CDA3201 Intro to Logic Design Lab Assignment

Name: Grade:

Dr. Petrie Lab 2, p. 4

2.a.12 [10 Petrie] By abstracting our design for the Half Adder into a “black box”, hiding all the gates

of the circuit (does not matter if NOT-AND-OR or all-NAND), we can use it as a component to

simplify how to design more complex components. Use Half Adders as

components to build a Full Adder. A Full Adder adds 3 inputs: Carry-in (Cin)

plus the two input bits: A and B. A Half Adder can only add 2 at a time, so we

need multiple Half Adders. Figure out how many Half Adders below are

needed and connect them to get the Cout and Sum answer of a Full Adder.

2.a.13 [5 Petrie] Complete the truth table for a Full Binary Adder. There are 3 inputs: A and B, and the carry

from previous stage, called Cin. Label the sum bit is Sum3 and the carry to next stage is Cout3.

 Inputs

A B Cin

Calculate sum
of A, B, Cin in

decimal

Outputs
in binary

Cout3 Sum3
0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

2.a) [2 Petrie] From the Truth Table,write the Sum of Minterms and the Canonical Sum of Products:

 Sum3 = f (A, B, Cin) = ∑ m (_____________), Sum3α = __________________________

 Cout3 = f (A, B, Cin) = ∑ m (_____________), Cout3α = __________________________

2.b) [2 Petrie] Optimize the above functions using K-

maps, label each cell with the corresponding minterm

number in the upper right of each cell, then fill in the

values of each cell according to the Truth table, find

the groupings and the simplest Sum of Products:

 Sum3 = f (A, B, Cin) = __________________

 Cout3 = f (A, B, Cin) = __________________

2

/100

 CDA3201 Intro to Logic Design Lab Assignment

Name: Grade:

Dr. Petrie Lab 2, p. 5

2.c) [2-TA] Implement the two optimized functions,

as a 3-input (A, B, Cin) 2-output (Sum3, Cout3)

NOT-AND-OR network using NOTs and only 2-

and 3-input gates (no 4-input)

2.d) [2-TA] Convert 2.c to simplest all-NAND circuit

by substituting equivalent NANDs configurations

(see 2.a.7) (use only 2- and 3- input NAND gates,

do not use 4-input NANDs), eliminate pairs of

NOTs along a wire. Label outputs Sum4, Cout4,

2.g) [2-TA] Create a new project Lab2_FullAdder_Petrie_YourName. Draw schematics Cout3, Sum3; and

Cout4, Sum4. Verify that Cout3=Cout4, and Sum3=Sum4 and their output matches the Truth Table for

the Full Adder in 2a.13. Capture Schematics and results for your portfolio file.

2.e) [4-TA] From the above all-NAND circuit determine how many 7400 and 7410 logic chips you will need

of each type (maximum 4 chips total) to build the Full Adder Sum4 and Cout4 circuits. Number each

NAND gate in 2.d and assign that same number to a gate in the corresponding chip below.

Chip How

many?

7400

7410

IMPORTANT: You will build a 5-bit Adder by the end of this lab, so first make sure you manage the space available on your

breadboard by placing a 74283 4-bit Adder 16-pin chip on the left side of your breadboard and the 4 chips for the all-NAND

Full Adder to its right. If you do not do this, you may have to redo all the wiring.

On page 6, use the diagram containing correct number of chips you need for your design and plan your

wiring for the Full Adder. Use 3 logic switches as inputs and 2 LEDs for the Output. Build it on the

breadboard.

2

/100

 CDA3201 Intro to Logic Design Lab Assignment

Name: Grade:

Dr. Petrie Lab 2, p. 6

2.e)

Place

74283

but

do NOT

wire

until later

 Cout Sum

2

/100

 CDA3201 Intro to Logic Design Lab Assignment

Name: Grade:

Dr. Petrie Lab 2, p. 7

As you see there are many connections to create a 1 bit adder. Now we abstract

all those gates into a “black box” as shown at right. We will use the black box as

a component to build other things, only worrying about the inputs and outputs and

how to interconnect the components, not what

is inside the box.

Below we see how we can connect four 1-bit Full Adders to create a 4-bit adder.

Note instead of A and B the inputs are a 4-bit number: A4 A3 A2 A1 and another

4-bit number B4 B3 B2 B1 and a 1 bit Cin, and the outputs, Cout remains 1 bit but

instead of Sum is a 4-bit S4 S3 S2 S1.

We can abstract the 4-bit adder we built above into one “black box”, which turns out to be packaged into

the 74283 chip. Below we see the logical diagram vs pinout diagram of the 74283. Note from the pinouts

of the 74283, C0 is equivalent to Cin, C4 is equivalent to Cout, and ∑ is S (Sum).

How do we connect four 74283 4-bit adders to make a 16-bit adder? (Hint: see connections of four 1-bit

adders above to make a 4-bit adder above)

Sum

FULL

ADDER

Cout

A B Cin

2

/100

 CDA3201 Intro to Logic Design Lab Assignment

Name: Grade:

Dr. Petrie Lab 2, p. 8

Sum

A B

FULL

ADDER
Cout

Cin

If we used our 4 bit Full Adder to add a maximum of 4 bit numbers, then there is no carry-in for the least

significant bit (LSB), note that the Cin of the LSB needs to be set to zero, and the carry-out from the most

significant bit (MSB) is lost, because the sum has a maximum of 4 bits to store the answer. When Cout = 1

the answer is incorrect, and is said to “overflow”.

Now you are ready to build the 5-bit adder by connecting the 4-bit adder your 1-bit Full Adder. The Full Adder

we built is shown below as a component. It will be used as the Least Significant Bit (the right most column).

If there is no column to the right of our Full Adder, then we should really use a Half Adder but we already have

the Full Adder wired. How can we make the Full Adder behave like a Half Adder – there is no carry-in, so to

what value should we set Cin of our Full Adder? To what do we connect the Cout of our Full Adder to in the

74283 chip? Make the connections below.

You will NOT do the Quartus for the 5-bit Adder.

2.f) [TA-6] The 5-bit adder. Connect your all-NAND 1-bit full adder to the standard 4-bit full adder (Chip

74283) making your adder the LSB of the 5-bit resulting adder. To simplify the testing procedure, set A4

and B4 switches to 0. To test your circuit, try as many input combinations as possible.

 Note: you need to wire the 5-bit Adder on your breadboard. Choose the set of chips you selected to build your Full Adder circuit and label

only the location of A and B that go into the NOT, the Cin and Cout. Connect your Full Adder to the 74283 4-bit Adder as you designed

above. You do not need to show all the other wiring of the Full Adder, just the pins used to connect to the 74283. Redo the switch

connections for the 5 As and the 5 Bs, and wire up the 5 LEDs for the 5 bit Sum. Note the Cout of the 74283 is not part of the Sum and there

is not another column/component to its left, so if it is 1, it will be lost because it is not connected to anything so the answer for the 5 bit Sum

will be incorrect..

 IMPORTANT: You will run out of slots for input “A” if you always get the values from the “A” switch. To overcome this, connect only 1

wire from the input switch to a gate that needs “A” input on the back board, then jump from that location to other places that need an “A”.

This way if you need to change the “A” to another switch you only change one wire. You can also wire from switch to one open row, and put

a jumper across the notch to have a whole row of 1’s available. If you need more “A”s then jump to another open row.

2

/100

 CDA3201 Intro to Logic Design Lab Assignment

Name: Grade:

Dr. Petrie Lab 2, p. 9

2.f)

∑1 ∑4 ∑3 ∑2 ∑0

2

/100

 CDA3201 Intro to Logic Design Lab Assignment

Name: Grade:

Dr. Petrie Lab 2, p. 10

 As part of Lab 0, you built a display with a special chip (microprocessor) that was

programmed to display Hexadecimal numbers on the dual 7-segment display. The

“driver” or controller chip has the following pinouts:

 1 - Vcc

 2 - W

 3 - X

 4 - blank

 5 - G

 6 - A

 7 - F

 8 - D

 9 - E

 10 - C

11 - B

12 - Z

13 - Y

14 - GND
The picture above is wired as the video instructed. The picture on the right makes some

modifications. Notice how much easier it is to follow the wirings. Notice how all the

resistors go in the same direction, although it does not matter in what direction you

connect them, putting in the same direction allows you to quickly scan the color bands

and detect if all are the same. This is much easier to detect if they are going in the same

direction. Notice the covering of the exposed resistor wire to avoid shorts. This was

easily done by stripping a wire the length of the exposure and keeping the stripped

portion of the wire sliding it onto the long exposed wire of the resistor. The dot of the

display is not controlled by the wiring of the videos because the microprocessor was

not programmed to handle the dot, only the hexadecimal display. To control the dot

requires an extra resistor. The wiring in the video the screen in always on when the

battery is on. This is distracting and wastes battery power, so in the rewiring the resistor

was wired (in yellow) into an empty column which is linked to either power or ground,

permitting only turning on the display when it is needed, saving battery power. You

may want to add the resistor and wiring to the blank input of the microprocessor

driver, but don’t worry about the other changes explained.

2.g) [5 Petrie] Display ∑3 ∑2 ∑1 ∑0 in the 7-segment display. Before you start

wiring verify the order of the inputs on the controller. From most significant to

least significant is it WXYZ or ZYXW? Temporarily connect only Vcc to each

input to see value displayed. Wire the ∑0 LED to the least significant input of

the 7-segment display, the ∑1 the input to the next significant, and so on. Note

∑4 is not connected to controller, which causes the display to give the answer

in hexadecimal numbers (Hex), 0 to F. Test with the following Sums. Write

the value of each operand in decimal and hex and calculate the sum in binary,

decimal verifying the answer in hexadecimal is correct. Notice that if the sum

turns out to be greater than 15 the answer displayed is incorrect due to overflow.

 Base Base Base Base Base Base Base Base Base Base Base Base

 2 10 16 2 10 16 2 10 16 2 10 16

 0 1 0 1 0 0 0 1 1 1 0 1 0 1 1 0 1 1 0 1
+ 0 0 1 0 1 + 0 0 1 1 0 + 0 1 0 0 1 + 0 0 0 1 1

Base 16
Hexadecimal

0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F

Base 2
Binary

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Base 10
Decimal

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

