R-Type Datapath

x3 x2 x1 add

x2	Read register 1

x3	Read register 2
x1 Registers
 (
ALUSrc
)Write
register

Write data

RegWrite

Read data 1

Read data 2

add
 (
ALU
) (
Zero
ALU

ALU
)4

 (
0
)M u x
1

operation

 (
result
)Address

Write data

MemWrite

 (
MemtoReg
)Read 	1 data 		M
 (
0
)u x

Data memory

 (
Instruction
)32 Imm 64
Gen

MemRead

32 x2 x1 load

x2	Read register 1

Read register 2
x1 Registers
Write
register

Write data

RegWrite
32

Read data 1

Read data 2

add
 (
ALU
) (
Zero
ALU

ALU
result
)4

 (
ALUSrc
0
)M u x
 (
64
)1

operation

Address

Write data

MemWrite

 (
1
) (
MemtoReg
)Read
data 	M u x
0
Data memory

 (
Instruction
) (
Gen
)32 Imm

MemRead

Andi x2, x1, 25

25 x1 x2 andi

 (
Instruction
)Inst
Word

x1	Read register 1

Read register 2
x2 Registers
Write
register

Write data

RegWrite

Read data 1

Read
 (
ALUSrc
0
)data 2 M u x
 (
64
)1

25

and
 (
ALU
) (
Zero
ALU

ALU
result
)4

operation

Address

Write data

MemWrite

 (
MemtoReg
)Read 	1 data 		M
 (
0
)u x

Data memory
 (
Gen
)32 Imm

MemRead

32 x1 x2 store

x2	Read register 1

Read register 2

Read data 1

add
 (
ALU
) (
Zero
ALU

ALU
result
)4

operation

MemWrite

MemtoReg

Write

Registers

 (
ALUSrc
0
)Read

Address

Read 1
data
 (
x1
Instruction
)register

Write data

RegWrite
IW

32

data 2 M u x
 (
64
)1

32
 (
Gen
)Imm

Write data

M u x
0
Data memory

MemRead

offset x2 x1 beq

Branch target address is PC + Imm * 2 (Slide #20)

 (
0
)PCSrc

 (
Add
)4

 (
PC
)Read address

x2	Read register 1
x1 Read register 2

Read data 1

 (
left

1
)Shift

ALUSrc

 (
Add
) (
ALU
)sub

4

M u x

 (
Sum
)1

operation

MemtoReg
Instruction

Write

Registers Read
Instruction memory

register

Write data

RegWrite

data 2

M
 (
M
) (
Zero
ALU

ALU

result
) (
Mem
W
rite
Read
Address
data
W
rite

Data
data

memory
emRead
)u 	 u x 		x

offset
 (
Gen
)32 Imm 64

PCSrc

Add

4

Shift left 1

Add

u x
Sum

Read
PC address

Read register 1

Read register 2

Read data 1

ALUSrc

4 ALU operation

Zero

 (
Mem
W
rite
Read
Address
data
W
rite

Data
data

memory
)MemtoReg
Instruction

Write

Registers Read

ALU

ALU
Instruction memory

register

Write data

RegWrite

data 2 M u x

result M
u
x

32 Imm 64
Gen

M emRead

These three stages are fulfilled in every processor. There is a fourth stage, which is Write-Back, which is when the execution units write the result, but this is usually counted within the execution stage of the instruction cycle.
First stage of the instruction cycle: Fetch
[image: Fetch Process]
The first stage of the instruction cycle is responsible for capturing the instructions in the RAM memory assigned to the processor through a series of units and registers that are the following:
Program Counter or Program Counter: Which points to the next memory line where the next processor instruction is located. Its value is incremented by 1 each time a complete instruction cycle is completed or when a jump instruction changes the value of the program counter.
Memory Address Register: The MAR copies the content of the PC and sends it to the RAM through the addressing pins of the CPU, which are wired with the addressing pins of the RAM itself.
Memory Data Register or memory data register : In the event that the CPU has to perform a memory reading, what the MDR does is copy the content of that memory address to an internal register of the CPU, which is a temporary pass register before its content is copied to the Instruction Register. The MDR, unlike the MAR, is connected to the data pins of the RAM and not to the addressing pins and in the case of a write instruction the content of what you want to write in the RAM is also written in the MDR
Instruction Register: The final part of the fetch stage is the writing of the instruction in the instruction register, from which the processor control unit will copy its content for the second stage of the instruction cycle.
These 4 sub-stages occur in all processors whatever their utility, architecture and binary compatibility or what we call ISA.
Control unit
[image: Control Unit]
The control unit is the most complex part that exists in a processor and its tasks are as follows:
They are in charge of coordinating the movement and the order in which of the data that moves inside and outside the processor, as well as the different subunits that are in charge of it.
In general, it is considered that the units of the capture stage or Fetch are part of the hardware that we call the control unit and this hardware is also called the Front-End of a processor.
It interprets the instructions and sends them to the different execution units to which it is connected.
It is communicated to the different ALUs and execution units of the processor that act
It is responsible for capturing and decoding the instructions, but also for writing the results in the registers, caches or in the corresponding address of the RAM.
[image: Opcode-Mode-Adress]
What the control unit does is decode the instructions and it does this because each instruction is actually a kind of sentence where the verb goes first and then the direct object or object on which the action is done. The subject ends up being eliminated in this internal language of computers by the fact that it is understood that it is the computer itself that executes it, so each number of bits is a sentence where the first 1 and 0 correspond to the action and the ones that come next is the data or the location of the data to be manipulated.
The second stage: Decode
[image: Decodificación Instrucciones]
There are different types of instructions and not all of them do the same, so depending on the type of instruction we need to know what execution units are going to be sent to and the most classic way of doing it is through what we call a decoder, which takes each instruction, divides it internally according to the opcode or instruction and the data or memory address where it is located.
For example in the diagram above we have the diagram of a processor with only 8 instructions, which can be encoded in only 3 bits. Each one of the instructions, once decoded, is sent to the different execution units that will resolve them.
[image: Control Unit Ciclo Instrucción]

This instruction cycle is the most complex of all and the one that defines the type of architecture. Depending on whether we have a reduced or complex set of instructions, this will affect the nature of the control unit, depending on the format of the instruction or how many are processed at the same time the decoding phase and therefore the control unit will have a different nature. other.
The easiest way to visualize what happens is to think of the instructions as trains circulating through a complex railway network and the control unit directing them to a terminal station, which is the execution unit that will be in charge of solving the instruction.
Third stage: Execute
[image: 1 bit ALU]
The last stage is the execution of the instructions, in this stage the instructions are resolved, but not all types of instruction are resolved in the same way, since the way to use the hardware will depend on the function of each one of them. them, in general we have four types of instructions:
Bit movement instructions: In which the order of the bits that contain the data is manipulated.
Arithmetic instructions: Where mathematical and logical operations are carried out, these are solved in the so-called ALUs or arithmetic-logical units
Jump instructions: In which the next value of the program counter is changed, which allows the code to be used recursively.
Instructions to memory: They are with which the processor reads and writes information from the system memory.
The other point is the instruction formats, since an instruction can be applied to a data, scalar or several data at the same time, which we know as SIMD. To finish and depending on the data format, there are different types of ALUs for the execution of arithmetic instructions, for example we have integer and floating point units as differentiated units today.
Once the instruction has been completed, the result is written to a specific memory address and the next one is executed. Some instructions do not manipulate memory values but rather certain registers. Thus, the program counter register is modified by the jump instructions, if we want to read or write data then the MAR and MDR registers are manipulated.

image4.png

image5.png

image6.png

image7.png

image8.png

image9.png

image10.png

image11.png

image12.png

image13.png

image14.png

image15.png

image16.png

image17.png

image18.png

image19.png

image20.png

image21.png

image22.png

image23.png

image24.png

image25.png

image26.png

image27.jpeg
12 bits 5 bits 3 bits 5 bits 7 bits

image28.png

image29.png

image30.png

image31.png

image32.png

image33.png

image34.png

image35.png

image36.png

image37.png

image38.png

image39.png

image40.jpeg
7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

image41.png

image42.png

image43.png

image44.png

image45.png

image46.png

image47.jpeg
| oy | w2 | rs1 [functd] @ || opoode

imm[12] imm[11]

image48.png

image49.png

image50.png

image51.png

image52.png

image53.png

image54.png

image55.png

image56.png

image57.png

image58.png

image1.jpeg
[fnet7 | rs2 | rs1 [funcs[rd_ | opoode |

7 bits 5 bits 5 bits 3 bits 5 bits 7 bits

image59.png

image60.png

image61.png

image62.png

image63.png

image64.png

image65.png

image66.png

image67.png

image68.png

image2.png

image69.png

image70.png

image71.png

image72.png

image73.png

image74.png

image75.png

image76.png

image77.png

image78.jpeg
0x0FFE1230: add x1, x2, x3
OxOFFE1234: Iw|sw x1, 32(x2)
O0x0FFE1238: beda x1. x2. offset

image3.jpeg
0x0FFE1230: add x1, x2, x3
OxOFFE1234: Iw|sw x1, 32(x2)
O0x0FFE1238: beq x1, x2, offset

image79.jpeg
Program Counter

l

Memory Addres
Register

Pines Direcccionamiento

Memory Data
Register

Pines de Datos

A 4

Instruction Register

A 4

Control Unit

RAM

image80.jpeg
Instruction Register

Control

Control Signals Bus

—— = Control Signal

from Control Bjis

Control Signals
to Control Bus

image81.jpeg
Opcode

Address or operand

image82.jpeg
Opcode (n bits)

dato (m bits)

Instruccion 20

Instruccion 2

‘——>»| Decodificador

Instruccion 2™

Instruccion 2"

image83.jpeg
Decd

PSWprivileged

image84.jpeg
Almvert Blavert Caisith

Operation

CamyOut

