ME 551: Computer-Aided Engineering	

\mathbf{M}	E 5	551	: (Comput	ter-Ai	ded I	Engine	ering
--------------	-----	-----	-----	--------	--------	-------	--------	-------

Name:				
Instructor	:	K. Nema		

HOMEWORK ASSIGNMENT #9

Notes:

Nome

Follow the HW instructions carefully in the syllabus.

- Your solutions must be attached to this sheet.
- Worth 50 Points.

- 1. Conduct a literature survey of advanced applications of the finite element method for engineering design and analysis.
- 2. Identify at least one application, which interests you the most.
- 3. Submit a report on your findings, with technical scope and information on the application you have identified (at least three pages).

Notes:

- A) Possible applications may include:
 - a. Stress analysis of complex structures, nonlinear materials, large deformations, structural stability (buckling), dynamic response, etc., -Computational Solid Mechanics (CSM).
 - b. Analysis of heat transfer problems involving solids, fluids convection, radiation, etc., - Computational Heat Transfer (CHT).
 - c. Analysis of fluid dynamics problems Computational Fluid Dynamics (CFD).
 - d. Analysis electromechanical electromagnetic problems of and Computational Electromagnetics (CEM).
 - e. Analysis of metal casting, plastics molding, phase change phenomena, etc.
 - f. Coupled problems, such as solid-fluid interactions, conjugate heat transfer, thermal stress, etc.

- B) Applications may be in automotive, aerospace, materials processing, biomedical (biofluids, bioheat, biomechanics), chemical, pharmaceutical, and computer manufacturing, industries.
- C) Good sources for investigation are various finite element and computational mechanics websites including:
 - a. www.ansys.com for Ansys
 - b. www.engr.iupui.edu/cfdlab for our department's Computational Fluid Dynamics Laboratory
 - c. <u>www.engr.iupui.edu/me/courses/fproject.shtml</u> for our department's sample undergraduate projects
 - d. <u>www.engr.iupui.edu/me/fpres.shtml</u> for our department's sample graduate projects
 - e. any other appropriate Web sites you might discover
- D) Your report should contain the following information:
 - a. Cover page
 - b. Description and significance of the problem
 - c. Application areas
 - d. Possible finite element modeling approaches
 - e. Your potential contributions
 - f. Source(s) of information (i.e., references)