
Introduction to Computer Science Course: CH08-320101
Jacobs University Bremen Date: 2017-11-21
Dr. Jürgen Schönwälder Due: 2017-11-28

ICS Problem Sheet #10

Problem 10.1: fold function duality (2+2+2 = 6 points)

The fold functions compute a value form a list by applying an operator to the list elements and by
using a neutral element. The foldl function assumes that the operator is left associative, the foldr
function assumes that the operatore is right associative. For example, the function call

foldl (+) 0 [3,5,2,1]

results in the computation of ((((0+3)+5)+2)+1) and the function call

foldr (+) 0 [3,5,2,1]

results in the computation of (3+(5+(2+(1+0)))). The value computed by the fold functions may be
more complex than a simple scalar. It is very well possible to construct a new list as part of the
fold. For example:

map’ :: (a -> b) -> [a] -> [b]

map’ f xs = foldr (\x acc -> f x : acc) [] xs

The evaluation of map’ (+3) [1,2,3] results in the list [4,5,6]. There are several duality theo-
rems that can be stated for the fold functions. Proof the following three duality theorems:

a) Let op be an associative operation with e as the neutral element. Then the following holds for
finite lists xs:

foldr op e xs = foldl op e xs

b) Let op1 and op2 be two operations for which

x ‘op1‘ (y ‘op2‘ z) = (x ‘op1‘ y) ‘op2‘ z

x ‘op1‘ e = e ‘op2‘ x

holds. Then the following holds for finite lists xs:

foldr op1 e xs = foldl op2 e xs

c) Let op be an associative operation and xs a finite list. Then

foldr op a xs = foldl op’ a (reverse xs)

holds with

x op’ y = y op x



Problem 10.2: fork system call (1+3 = 4 points)

Consider the following C program (let me call the source file happy-fork.c.)

#include <unistd.h>

int main(int argc, char *argv[])

{

for (; argc > 1; argc--) {

if (0 == fork()) {

(void) fork();

}

}

return 0;

}

a) Assume the program has been compiled into happy-fork and that all system calls succeed at
runtime. How many child processes are created for the following invocations of the program:

- ./happy-fork

- ./happy-fork a

- ./happy-fork a b

- ./happy-fork a b c

- ./happy-fork a b c d

b) Write a Linux assembly program (x86 64-bit Linux) using the GNU assembler that does the
same as the C program shown above. It should in addition print x\n right before exiting.
The assembly code should invoke the system calls directly, do not use any library calls. See
hello-asm-syscall.s in the lecture notes as a starting point. Compile your assembly code
with gcc -nostdlib -static. Make sure your assembly code has proper comments so that
we can understand it.

The fork() system call number is 57 on Linux. You can find the value of argc at (%rsp) at
_start.


